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Abstract: In this work we present an integer programming-based algorithm for 
adapting the execution of WS-BPEL scenarios, through the dynamic selection 
of the services to be invoked, according to criteria and policies set by the user. 
The proposed algorithm is experimentally evaluated both in terms of adaptation 
quality and adaptation computation overhead. The experimental results 
demonstrate that the proposed approach achieves to considerably improve 
adaptation speed, as compared to the exhaustive search algorithm which is 
considered as a baseline, while at the same time maintaining adaptation quality. 
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1 Introduction 

Contemporary web services (WSs) are distributed applications where a single user can 
perform complex computing processes, without needing to consider the technological 
details on the part of the service provider and Web Services Business Process Execution 
Language (WS-BPEL) is the standard language for designing and executing business 
processes that encompasses the execution of multiple WSs (Fu et al., 2004; Hallwyl et al., 
2010). The communication specifications of such applications are usually based on 
widespread and common protocols, such as HTTP for transport and JSON&XML and its 
derivatives for parameter encoding, and the execution of the application is routed through 
a distributed execution engine available to the single user. These widespread protocols 
allow system designers to organise individual services in order to build higher-level 
business services. For example, users who plan their vacations abroad and visit the 
website of a travel agency, are required to fill in the appropriate forms for the destination 
of the trip and the means of transport of their choice (airplane, boat, bus, etc.), they may 
select the category of the hotel they would like to stay in (e.g., a three-star hotel) and any 
venues they would like to attend, such as a football or basketball match, visiting a 
museum or attending a concert or theatre performance; then, after a user submits the 
request, the software of the travel agency communicates with each of the information 
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systems that perform individual purchases (e.g., airline company, hotel, theatre, etc.) to 
complete the reservations designated by the user. 

The procedure described above necessitates that the WSs that will be invoked in the 
WS-BPEL scenario are known in advance. However, in the modern internet, an 
individual service (e.g., booking a flight or checking for available rooms in a hotel) is 
typically offered by multiple providers, and each provider makes a service available 
under (generally) different service quality parameters (quality of service – QoS), such as 
cost, response time, reliability and so forth (O’Sullivan et al., 2002). In this context, it is 
highly desirable for users to be able to specify qualitative criteria that should be fulfilled 
by the service they receive; and subsequently, the execution engine should adapt the 
realisation of the service provision to each user, by selecting WSs that conform to the 
QoS specifications set by the user. 

For example, in a holiday planning WS-BPEL scenario such as the one described 
above, the user may request an airline recommendation (limiting thus the choice of 
transportation means to air travel only), while at the same time requesting a reservation at 
a particular hotel H and also indicating that she wants to attend an art performance; and in 
the QoS domain, the user may specify that the price of the flight is ‘low’, whereas the 
quality of the art performance is ‘high’, with the total price of the trip being ‘moderate’. 
Then the system should find WSs realising the requested functionalities (air ticket 
purchase, art performance ticket purchase), subject to the restrictions designated by the 
user (‘low’ air fare, ‘high’ performance quality), combine them with the (rigidly 
specified) reservation to hotel H, and ascertain that the cost of the whole combination is 
‘moderate’. 

A straightforward approach to implementing the identification of the service 
combination that most closely matches the user-designated functionality and QoS 
specification would be to generate all possible combinations that the available WSs can 
form and compute a fitness score for each one (Margaris et al., 2013), under an 
exhaustive search (ES) approach. However, in real-world scenarios, the number of WSs 
that realise each functionality is high, hence the cost of the generation of all possible 
service combinations is prohibitively high. The solution to this problem can be given by 
using integer programming (IP) techniques (Schrijver, 1998), which are widely used for 
optimising constraint problems, by restricting some or all of the objective function’s 
variables to be integers. 

In this work, we present an IP-based (Schrijver, 1998) recommendation algorithm for 
optimising the WS-BPEL scenario adaptation process that accommodates QoS criteria set 
by users/clients. The main objective is to create an algorithm that can efficiently compute 
the adaptations that satisfy the QoS criteria set by users, while at the same time 
maintaining the optimality of the computed adaptations, i.e., guaranteeing that the 
computed adaptations are the optimal ones, under the specified QoS restrictions. 

The rest of the paper is structured as follows: Section 2 overviews related work. 
Section 3 presents the necessary foundations for our work, which include QoS concepts, 
subsumption relations and IP. Section 4 presents the proposed IP algorithm, while for 
self-containment purposes we briefly present the ES algorithm introduced in Margaris  
et al. (2013), which also performs QoS-based adaptation of WS-BPEL scenario 
execution. The ES algorithm is used as a baseline in the experimental evaluation. In 
Section 5 we report on experiments conducted to assess performance of the proposed 
technique, both in terms of efficiency (the time needed to compute the requested 
recommendations) and effectiveness (adaptation quality), aiming to substantiate the 
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utility of the presented algorithm and its practical applicability. Finally, Section 6 
concludes the paper and outlines the future work. 

2 Related work 

Nowadays, information systems in the internet are very frequently implemented by 
composing WSs offered by individual providers, since the adaptation process of WS 
scenarios is a topic that has attracted considerable research efforts over the last years, 
ranging from QoS (de)composition and optimisation to dynamic prediction and 
uncertainty, and from exception resolution to fault-tolerance approaches. In the next 
paragraphs an overview of works in the aforementioned areas is presented. 

Several works exist which aim at optimising WS composition process. Chen et al. 
(2016) present a QoS-aware WS composition method by multi-objective optimisation to 
assist users make variable decisions. The problem of QoS-aware WS composition is 
formulated to a multi-objective optimisation model where the individual optimisation 
objective is either QoS performance or QoS risk, while an efficient e-dominance  
multi-objective evolutionary algorithm is developed to solve the presented model. 
Rodriguez-Mier et al. (2016) present a theoretical analysis of graph-based service 
composition utilising its dependency with service discovery. Their work defines a 
composition framework integrating fine-grained I/O service discovery that enables  
graph-based composition generation. The composition includes the semantically relevant 
set of services for input-output requests. Their proposed framework also presents an 
optimal composition search algorithm for extracting the optimal composition from the 
graph by minimising the number and the size of services, as well as several graph 
optimisations for improved system scalability. The approach proposed by Xia et al. 
(2011) allows for specification of QoS constraints, which drive the adaptation process; 
the adaptation process aims to minimise an objective function for the entire web service 
orchestration (WSO), employing either heuristic (OPTIM_HWEIGHT) or brute force 
(OPTIM_S) algorithms. Hammas et al. (2015) propose a WS architecture supporting 
global QoS optimisation, as well as dynamic WS composition. They also propose an ant 
colony optimisation-based algorithm for QoS aware WS selection. Liang et al. (2019) 
focus on WS composition for internal complementarity likelihood cases. More 
specifically, they address the problem of QoS-aware web service selection with internal 
complementarity (WSS-IC). This is achieved by transforming this problem into a  
multi-dimensional multi-choice knapsack problem (MMKP), proving that their proposed 
transformation has non-polynomial time complexity. They demonstrate that existing 
approaches to MMKPs are not computationally feasible to resolve QoS-aware WSS-IC 
by performing complexity analysis. Finally, they propose an iteratively improving 
framework for deriving the solution, iteration by iteration, while taking into account both 
solution structure and QoS constraints, where, at each iteration, the current solution gets 
improved by solving a disjunctively constrained knapsack problem. Margaris et al. 
(2013) perform a horizontal QoS-based adaptation, supporting both the sequential and 
parallel execution structures within the BPEL scenario. However, this approach uses very 
limited QoS-based criteria (optionally specifying lower and upper bounds for each QoS 
attribute), hence running the risk of inferior overall QoS of the formulated solutions when 
compared to the possibly attainable optimal composition QoS, especially for the cases 
where CF has to address known issues such as grey sheep and cold start. Lu and Xu 
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(2017) propose and implement a web-based system that utilises distributed knowledge for 
intelligent service composition and adaptive resource planning. Gupta et al. (2018b) 
present a literature review of different tools and approaches, which are available for 
WSO. Furthermore, they compare earlier WSO approaches, taking into account different 
benchmarks, and identify the needs of the improvements. Machorro-Cano et al. (2020) 
propose the design of a language for internet-of-things (IoT) WSs composition, which 
considers the WSO and choreography in order to define business processes in a supply 
chain in the healthcare domain, while at the same time discuss important literature on 
business processes, IoT WSO, IoT WSs choreography and IoT WSs coordination. 
Furthermore, they propose the design of a language for IoT WS composition, presenting 
the expressivity of the language, the WSs orchestrating process and choreography 
characteristics. Gupta et al. (2018a) propose a QoS-based fault-detection and  
fault-tolerance approach which uses the dynamic WSO. Their approach also considers the 
users’ preferences and WSs’ QoS at runtime. Their approach uses reliability in two 
phases: in the first phase a trust-based WS filtering mechanism is used, achieving 
reliability at component level before a fault occurs, while in the second phase, a decision 
for dynamic recovery is taken, whenever a fault is detected in a process. 

Zeng et al. (2004) present a QoS-aware middleware platform, namely AgFlow, which 
supports quality driven WS compositions, by maximising user satisfaction expressed as 
utility functions over QoS attributes, while at the same time satisfying the constraints set 
by both the user and the structure of the composite WS. In this work, the overall 
execution time of each candidate solution is computed using the critical path algorithm, 
an approach that limits the amount of optimisation that can be achieved through the use 
of IP techniques and thus resulting in increased adaptation computation overheads. 
Cardellini et al. (2017) present a software platform supporting QoS-driven adaptation of 
WS-oriented systems, named MOSES, which integrates within a unified framework 
different adaptation mechanism, achieving a greater flexibility in facing various operating 
environments and the possibly conflicting QoS requirements of several concurrent users. 
The per flow runtime adaptation presented in this work and detailed in Cardellini et al. 
(2012) also employs a linear programming model to compute the optimal adaptation, the 
model adopted in MOSES however groups users into service classes, where for each user 
class the importance of different QoS attributes is pre-determined and spans across all 
WS-BPEL processes invoked by users within this class. This arrangement allows 
statistics from previous executions to be used for future adaptations, but on the other 
hand limits the flexibility available to users, who may want vary QoS attribute 
importance settings according to individual WS-BPEL scenario invocation needs, e.g., 
maximise cost importance for one invocation, while maximising reliability importance 
for another invocation. 

In order to model services with dynamically changed attributes and uncertain effects, 
Wang et al. (2016) propose an approach that introduces branch structures into composite 
solutions to cope with uncertainty in the service composition process. Liu et al. (2015) 
propose a WS composition method based on QoS dynamic prediction and global QoS 
constraints decomposition. Their approach includes two critical phases. The first phase 
happens before service composition, by decomposing global QoS constraints into local 
constraints, thereby transforming the WS dynamic composition problem to a local 
optimisation one. The second phase happens at runtime, using predicted QoS values to 
select the optimal WS for the current abstract service. Zhang and Lyu (2017) present a 
WS search engine, namely WSExpress that is able to find the desired WS. WSExpress 
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ranks the publicly available WS by both functional similarities to user queries and  
non-functional QoS characteristics of the WSs. Furthermore, WSExpress can 
automatically replace a failed WS with a suitable one. This work employs a greedy 
algorithm to determine the adaptation that best fits the optimisation goal, and therefore 
the approach proposed therein is prone to calculating suboptimal solutions, due to the 
presence of local maxima in the search space. Zatout et al. (2018) present an architecture 
for the adaptation and monitoring of WS composition using a set of components that 
cooperate in order to ensure the proper operation of WSO; the presented architecture is 
based on the dynamic selection of alternative WSs. Furthermore, they provide a case 
study of Bookstore process to illustrate their proposal and discuss some implementation 
results, with mainly focusing on the throughput and response time attributes. 

Some works in the area explicitly address the reliability/fault-tolerance aspects that 
are critical in a number of domains, given the distributed and error-prone nature of the 
internet. Kareliotis et al. (2009) present the ASOB middleware, which integrates  
QoS-based adaptation with exception resolution. The presented middleware intercepts 
WS invocation failures and distinguishes business system faults from logic faults, 
remedying the first category through replacing failed WSs by ‘next best’ solutions; 
exceptions stemming from business logic faults are left to the WS-BPEL scenario 
designer to resolve through appropriate handlers, since they cannot be automatically 
addressed. Song and Tilevich (2019) enhance compiler-generated execution WSO with 
equivalence to efficiently increase reliability. They also introduce a dataflow-based 
domain-specific language, whose dataflow specifications include the implicit declarations 
of equivalent micro-services, as well as their execution patterns. Furthermore, their work 
introduces new equivalence workflow constructs, in order to automatically generate 
reliable workflows and execute them efficiently. 

The approach proposed in this paper extends the state-of-the-art in the WS-BPEL 
scenario execution adaptation by providing collectively the following features: 

• formulating the task of finding an optimal adaptation as a multicriteria IP 
optimisation problem, which can be efficiently solved using standard IP problem 
solver software 

• supporting both sequential and parallel service compositions within the WS-BPEL 
scenario 

• considering multiple QoS dimension in an extensible fashion, allowing the 
accommodation of additional QoS dimensions as needed 

• providing flexibility for users to select the WS-BPEL scenario adaptation goals at a 
per-invocation granularity. 

However, none of the aforementioned works present an IP recommendation algorithm 
that takes into account QoS criteria set by users, aiming at both minimising the adaptation 
formulation time and maximising the recommendation adaptation quality. 
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3 Background on QoS attributes, subsumption relationships and IP 
concepts 

The following sub-sections include a summary of the concepts and underpinnings from 
the domains of WS QoS attributes, WS subsumption relationships and IP that are used in 
our work. 

3.1 WSs QoS attributes 

WS QoS attributes are quantities that are able to describe measurements of the overall 
performance of a WS. Gouscos et al. (2003) define QoS attributes for service latency 
(time elapsing between invocation and receiving of the reply) and throughput (number of 
requests that are executed per time unit), while O’Sullivan et al. (2002) and Comerio  
et al. (2007) consider invocation cost (monetary) and reliability (the degree of being 
capable of maintaining the service and service quality, measured, e.g., as number of 
failures per time unit). For conciseness purposes and without loss of generality, in this 
paper we will consider only the attributes cost (c), response time (rt) and reliability (rel), 
adopting their definitions from O’Sullivan et al. (2002) and Comerio et al. (2007). 
Lower-level QoS aspects, e.g., network speed, reliability and latency, are taken indirectly 
into account, since they reflect on higher-level aspects, e.g., response time (affected by 
network speed and latency) and service reliability (affected by the network-level 
reliability). The detailed investigation of the interplay between network-level QoS 
aspects and service-level QoS aspects is considered part of our future work. 

WS-BPEL is the standard language for designing and executing business processes 
that encompass the execution of multiple WSs. In the context of a WS-BPEL scenario 
execution, multiple WSs, s1, s2, …, sn are invoked. A user may want to specify constraints 
on the QoS delivered by each individual WS executed in the context of a specific 
invocation; to this end, the user may provide QoS specifications regarding the upper and 
lower bounds for each QoS attribute, for each of the services sj. In other words, for a sj 
service included in an WS-BPEL scenario, the user may provide the following two 
vectors: 

• MINj(minrt,j, minc,j, minrel,j) 

• MAXj(maxrt,j, maxc,j, maxrel,j). 

where vector MINj designates the lower bounds of the QoS attributes for the service 
implementation that will be selected to realise the functionality of sj (e.g., booking a 
hotel), while vector MAXj designates the corresponding upper bounds. In addition, the 
user provides a weight vector W(rtw, cw, relw) that indicates the importance of each 
attribute in the context of the particular invocation of the WS-BPEL scenario. Effectively, 
the weight factor value is multiplied by the value of the corresponding QoS attribute, and 
these products are then aggregated in order to produce an overall score for the scenario. If 
the invocation request does not include a QoS attribute weight specification, then all 
attributes are considered of equal weight, i.e., the weight of each QoS attribute is set to 
1/Nq, where Nq denotes the number of qualitative attributes considered. If, for a service, 
the minimum value for some qualitative attribute is not provided, then the lower bound is 
set to 0. Correspondingly, if the maximum value for some qualitative attribute is not 
provided, the upper bound is set to 1. Note that while the upper and lower bound vectors 
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apply to each individual service si, the weights apply to the whole composition, rather 
than to individual services, since the weight reflects the importance attached to each QoS 
characteristic for the process as a whole, and not to its constituents. 

As far as attribute values are concerned, clearly different attributes may have different 
measurement units (e.g., requests/month for throughput vs. euros for cost), and different 
magnitudes (e.g., the requests/month attribute may scale to a range of billions, while a 
price may be in the range of thousands). In order to have meaningful results from 
combining such attribute values, we consider that all attributes are normalised in the 
range [0, 1], through the application of a standard normalisation formula (He and Wu, 
2008): 

min( )( )
max( ) min( )

v vnorm v
v v
−=

−
 (1) 

where v is the value to be normalised, while min(v) and max(v) are the minimum and 
maximum values of the corresponding attribute in the database extension. Furthermore, 
we consider that larger values correspond to higher QoS levels: for attributes where the 
inverse holds (such as price and latency), it is straightforward to transform their values to 
a ‘higher is better’ scheme, by altering the normalisation formula above to 

min( )( ) 1
max( ) min( )

v vnorm v
v v
−= −

−
 (2) 

This approach is typically followed for the handling of QoS attribute values in the context 
of WS selection and composition (Halfaoui et al., 2015). 

WS-BPEL scenarios compose multiple individual WSs to composite business 
processes, which are themselves (composite) WSs. The execution of individual WSs may 
proceed sequentially (i.e., serially, where the execution of the next service commences 
when the execution of the previous one has concluded) or in parallel (services are 
executed concurrently). To calculate the quality of composite WSs consisting of 
individual WSs ws1, …, wsn, which are executed sequentially or in parallel and have QoS 
features equal to (rt1, c1, rel1), …, (rtn, cn, reln), respectively, the formulas outlined in 
Table 1 (Canfora et al., 2005) are employed. 
Table 1 Computation of composite services QoS 

 
QoS attribute 

Response time Cost Reliability 
Serial composition 

1

n
i

i
rt

=  
1

n
i

i
c

=  
1

n
i

i
rel

=∏  

Parallel composition maxi(rti) 
1

n
i

i
c

=  
1

n
i

i
rel

=∏  

As can be seen in Table 1, the response time of a serial structure is equal to the sum of 
the response time of its individual components, while the response time of a parallel 
structure is equal to the maximum value of its individual components. This difference is 
important for the subsumption process, as different search strategies should be used to 
optimally tailor the script to the user’s QoS specifications. 
 



   

 

   

   
 

   

   

 

   

    An integer programming-based algorithm 315    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 2 Example of repository contents. 

Service Response time Cost Reliability 
A1 0.6 0.6 0.6 
A2 0.8 0.8 0.8 
B1 0.2 0.2 0.2 
B2 0.7 0.7 0.7 

For example, let us consider a WS-BPEL scenario involving the sequential execution of 
services A and B. For an execution of this scenario, the weight vector for QoS features 
has been set to W = (1, 1, 0), while at the time of the WS-BPEL scenario execution, the 
services listed in Table 2 are known. Then, the adaptation engine should select services 
A2, B2, with a score of 2, since for these services we have: 

( ) ( )( )2 2 2 2, 1 , 1 2A B A Bscore sum rt rt sum c c= ∗ + ∗ =  (3) 

It is clear that this score is higher than any other combination. In a scenario, however, 
involving parallel execution, the executing engine should select services A2 and B1, since 
they provide an overall score equal to 

( ) ( )( )2 2 2 22 max , 1 , 1 1.7A B A Bscore rt rt sum c c= ∗ + ∗ =  (4) 

which is higher than the score of 1.3 achieved by the combination (A2, B2). 

3.2 Subsumption relationships 

When a WS-BPEL scenario is adopted to match the QoS designations provided by the 
user, the execution adaptation process selects WS service implementations to realise 
functionalities that appear in the context of the WS-BPEL scenario. Therefore, the 
adaptation software needs to be able to test whether within a particular execution, a WS 
service implementation A can realise some requested functionality B. In this work, we use 
the service matchmaking relationships known as subsumption relationships (Bellur and 
Kulkarni, 2007) to address this issue. More specifically, the subsumption relationships 
used and the rules defining which subsumption relationships dictate service 
replaceability, are as follows: 

1 A exact B, if and only if A provides the same functionality as B. Clearly in this case 
service A can be used to deliver the functionality B requested in the WS-BPEL 
scenario. 

2 A plug-in B, if and only if A provides a more specific function than B. For example, 
service Β could belong in the ‘travel’ category, whereas Α could belong to the more 
specific ‘air travel’ (sub)category. In this case, whenever the functionality of B is 
required, the functionality of A could be used, since it provides a specialisation of the 
functionality provided by B. 

3 A subsume B, if and only if A provides more generic functionality than B. In this case 
A cannot be directly used whenever B’s functionality is required. For example, if B 
corresponds to the ‘sea travel’ functionality, while A implements a ‘trip’ 
functionality, then we cannot (always) use service A to realise functionality B, as 
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service A may only realise ‘air travel’ and ‘car travel’, failing thus to deliver the 
requested ‘sea travel’. We note here that in some cases service A could be used to 
realise functionality B, however this cannot be determined automatically by the 
adaptation algorithm. 

4 A fail B, in all other cases. When A fail B holds, A cannot be used to deliver the 
functionality B. 

For more information on subsumption relationships, the interested reader is referred to 
(Bellur and Kulkarni, 2007). 

3.3 Integer programming 

IP is a methodology for optimising problems where integer values are assigned to 
decision variables (Schrijver, 1998). IP programming is a sub-domain of linear 
programming where decision variables may be assigned with generic real values. The 
additional requirement for computation of integer solutions only makes IP problems 
harder to solve than linear programming problems, increasing their complexity; however, 
a number of optimisation techniques which limit the solution search space (Bixby et al., 
2004) render IP problem solution computation highly efficient. Furthermore, IP solvers 
employ a multitude of techniques to speed up the computation of solutions to IP 
problems. Indicatively, such techniques include cutting planes, presolve, branching rules 
and branch and bound methods, heuristics, node presolve and probing on dives (Bixby  
et al., 2004), with each speed up factor providing a speed up ranging from 53.7% (cutting 
planes) to 1.1% (probing on dives). The potential to apply individual methods and 
explore the effectiveness of each of them on the speed and quality of the solution 
computation will be considered in the context of our future work. 

IP problems involve a set of decision variables, x1, x2, …, xn, the values of which need 
to be computed, in order to maximise (or minimise) an objective function which takes the 
following form: 

1 1 2 2 n nc x c x c x+ + +  (5) 

where c1, c2, …, cn are problem-specific coefficients. The solution, which effectively 
resolves to a set of value assignments to decision variables (x1 = v1, x2 = v2, …, xn = vn) 
where vi ∈ Z, ∀i: 1 ≤ i ≤ n, may be subject to constraints on the values assigned to 
variables, which take the following form: 

11 1 12 2 1 1 1

21 1 22 2 2 2 2

1 1 2 2

n n

n n

m m mn n m m

a x a x a x relOp b
a x a x a x relOp b

a x a x a x relOp b

+ + +
+ + +

+ + +







 (6) 

where aij, bi are problem-specific coefficients and relOpi is a relational operator (>, ≥=, =, 
≤, <, ≠), ∀i: 1 ≤ i ≤ n, ∀j: 1 ≤ j ≤ m. 

The formulation of the WS-BPEL scenario adaptation problem as an IP problem and 
its solution is presented and analysed in the following section. 
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4 The IP algorithm 

The proposed algorithm utilises the information described in Sections 3.1 and 3.2 and 
formulates an invocation-specific IP problem, the solution of which corresponds to the 
desired adaptation of the adaptation of the execution of the WS-BPEL process to match 
the QoS specifications designated by the user. The steps taken by the algorithm are as 
follows: 

1 Firstly, the algorithm extracts the functionalities for which recommendations are 
requested for. 

2 Subsequently, for each such functionality, it retrieves the WSs that are candidate to 
be used for the realisation of this functionality in the context of the particular  
WS-BPEL scenario invocation. 

3 Finally, it formulates and solves the IP problem, determining the optimal WS-BPEL 
scenario adaptation for the particular scenario invocation request. The QoS 
specifications given by the user are effectively used as problem-specific coefficients 
of the IP problem (c.f. Section 3.3). 

In the Section 4.3, we will detail the three steps of the proposed IP algorithm. To 
illustrate the proposed approach, the case of adapting a travel planning business process 
will be used; the example WS-BPEL scenario, together with the dataset that will be used 
in the example, are described in Section 4.1. For completeness, in Section 4.2 we present 
the exhaustive adaptation algorithm, which every possible service combination, 
calculates the overall QoS of the corresponding composition, and finally selects as a 
solution the service combination providing the highest overall QoS (Margaris et al., 
2013); the exhaustive algorithm is used as a baseline in the experimental evaluation, 
presented in Section 5. 

4.1 Example WS-BPEL scenario and dataset 

To exemplify the proposed approach, we will use the case of adapting the invocation of a 
simple WS-BPEL scenario. This scenario describes a business process of booking a trip 
(modelled as a WS-BPEL scenario BookTrip), which includes the functionalities of 
finding an airline ticket, booking a luxury hotel room and attending an athletic event. The 
booking of air tickets is performed first, and afterwards the hotel reservation and the 
athletic event ticket purchase proceed in parallel, as indicated by the SEQ and FLOW 
constructs in Figure 1. 

Figure 1 Business process execution request example 

BookTrip 
    SEQ 
        (name=bookAirTravel, operation=AirTravel) 
        FLOW 
            (name=bookLuxury, operation=Luxury) 
(name=bookAthletic, operation=Athletic)  

 



   

 

   

   
 

   

   

 

   

   318 D. Margaris et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

In our example, we consider a particular scenario invocation where the QoS weights and 
the upper and lower bounds for the QoS attributes for each functionality are as shown in 
Table 3; the respective specifications in the form of an XML file are depicted in Figure 2. 
In Table 3 we can observe that the user does not impose any restrictions about the 
minimum or maximum response time for book flight (bookAirTravel), however s/he sets 
minimum and maximum bounds of 0.29 and 0.89, respectively, for the cost of the 
particular operation. Similarly, the user requests that the reliability of the bookAirTravel 
operation would not be less than 0.45, while no restrictions are imposed for the maximum 
value of reliability. Analogously, constraints are defined for the other two services 
(bookLuxury and bookAthletic). 
Table 3 Specifications of QoS weights and bounds 

QoSWeights = (rt: 0.2, c: 0.3, rel: 0.5) 
Functionality QoS bounds vectors 
bookAirTravel MinbookAirTravel = (rt: null, c: 0.29, rel: 0.45) 

MaxbookAirTravel = (rt: null, c: 0.89, rel: null) 
bookLuxury MinbookLuxury = (rt: null, c: 0.51, rel: 0.41) 

MaxbookLuxury = (rt: null, c: 0.98, rel: null) 
bookAthletic MinbookAthletic = (rt: null, c: null, rel: 0.31) 

MaxbookAthletic = (rt: null, c: 0.9, rel: null) 

Figure 2 XML representation of the QoS weights and bounds 

<?xml version="1.0" encoding="utf-8"> 
<invokeProcess target="BookTrip"> 
<QoSweightsrespTime="0.2" cost="0.3" reliability="0.5" /> 
<serviceInvocationQoS> 
<invoke name="bookAirTravel" minCost="0.29"  

maxCost="0.89" minReliability="0.45" /> 
<invoke name="bookLuxury" minCost="0.51" 

minReliability="0.41" maxCost="0.98" /> 
<invoke name="bookAthletic" minReliability="0.31" 

maxCost="0.9"/> 
</serviceInvocationQoS> 
</invokeProcess>  

In Figure 2, the QoSWeights entity corresponds to the weight vector that indicates the 
importance of each attribute in the context of the particular adaptation. Then, each  
WS-BPEL invoke construct is enhanced with attributes which convey the QoS minimum 
and maximum limits for the relevant QoS attributes of the individual services: for each 
invocation corresponding to an invoke construct, the service that will be selected to 
realise the particular functionality should adhere to these limits. Note that the QoS 
attribute weights have a scenario-wide scope, while the scope of the QoS attribute value 
limits is one single service invocation. 
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Figure 3 Hierarchy of services and service implementations for the travel planning WS-BPEL 
scenario (see online version for colours) 

   

  

   



   

 

   

   
 

   

   

 

   

   320 D. Margaris et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 3 illustrates the taxonomy used in the travel planning WS-BPEL scenario  
(SoDa Lab, 2020). The taxonomy contains three first-level branches, namely ‘ticket’, 
‘residence’ and ‘event’, which are displayed as separate trees in Figure 3 to promote 
readability. Nodes representing categories are represented as shaded rectangles with 
double-lined borders, while nodes corresponding to individual service implementations 
are denoted as clear rectangles with single-lined borders. A line between two rectangles 
denotes that the lower-level node belongs to the category represented by the higher-level 
node. 

Each node corresponding to a service implementation bears information regarding the 
QoS aspects of the corresponding implementation. An excerpt of this information is 
depicted in Figure 4. 

Figure 4 Excerpt of the service taxonomy extension 

Category: Ticket 
  Category: Air Ticket 
    Category: Air Travel 
Implementation: SwissAir (rt=0.75, cost=0.7, rel=0.8) 
      Implementation: OlympicAirways (rt=0.8, cost=0.55, rel=0.78) 
... 
Category: Residence 
  Category: Hotel 
    Category: Luxury 
Implementation: GrandResort (rt=0.91, cost=0.62, rel=0.61) 
Implementation: Costa Navarino (rt=0.95, cost=0.92, rel=0.95) 
      Implementation: Hilton (rt=0.98, cost=0.88, rel=0.39)  
... 
Category: Event 
Category: Athletics 
Category: Football 
      Implementation: EuropeanCup (rt=0.75, cost=0.55, rel=0.9) 
      Implementation: ChampionsLeague (rt=0.45, cost=0.94, rel=0.7) 
Implementation: SportsTicketBooker (rt=0.65, cost=0.6, rel=0.8) 
... 
  Category: Culture 
    Category: Music 
Implementation: MagicOpera (rt=0.29, cost=0.54, rel=0.82)  

4.2 The ES algorithm 

The ES algorithm initially reads the BPEL scenario and identifies the respective branches 
of the taxonomy under which the service implementations which are candidate for use in 
the particular scenario adaptation are located. According to the rationale of the 
subsumption relationships, only nodes delivering the exact and plug-in functionalities, in 
relation to the one designated in the scenario, are eligible for use to deliver the 
functionality in the composition. Consequently, if a service category is specified in the 
scenario under adaptation, only service implementation nodes that are descendants (either 
direct or indirect) of the category within the taxonomy tree are selected; if a concrete 
service implementation is designated in the scenario, then the direct parent of the 
designated service implementation is first located, and subsequently its descendants 
(either direct or indirect) within the taxonomy tree are selected. 
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In our example, the realisation of the ‘Luxury’ service designated within the scenario 
can be performed by any of the services under the ‘Luxury’ category within the 
taxonomy tree of Figure 3 (Grand Resort; Costa Navarino; Hilton), whereas the 
realisation of the ‘Athletic’ service can be performed by either the ‘SportsTicketBooker’ 
service (a direct descendant of the ‘Athletic’ category within the taxonomy tree), or any 
of the descendants of the ‘football’ and ‘basketball’ service categories. 

Once the candidate services delivering the required functionalities have been 
identified, they are filtered considering the QoS attribute limits designated by the user for 
the particular invocation. In our example, service ‘Hilton’ would be filtered out because it 
does not meet the minimum threshold for reliability specified by the user, and service 
‘ChampionsLeague’ would be discarded because its cost exceeds the maximum cost 
threshold. After this step has concluded, for each of the functionalities fi specified in the 
scenario under adaptation, a set of candidate functionality implementations ifC  is 
formulated. 

As stated above, the ES algorithm proceeds in formulating all possible  
service implementation combinations, considering service implementations that fulfil the 
user-provided thresholds. This is equivalent to the Cartesian product of the candidate 
functionality implementations sets ,ifC  i.e.: 

1 2 nf f fallCombinations C C C= × × ×  

where n is the number of functionalities within the scenario being adapted. 
In our example, the set of all combinations would be 

.AirTravel Luxury AthleticallCombinations C C C= × ×  

Subsequently, for each of the combinations, the QoS attribute values of the compositions 
are computed, using the formulas presented in Section 3.1, and the overall score of the 
composition is calculated, by applying a weighted sum formula on the combination’s 
QoS attribute values, where the weights for the QoS attributes are given by the 
QoSweights vector (c.f. Figure 2). Finally, the combination having the highest overall 
score is selected. 
Table 4 QoS attribute value and overall score computation formulas for the trip booking 

scenario 

Computation target Computation formula 
Response time (rt) rtAirTravel + max(rtLuxury, rtAthletic) 
Cost (cost) costAirTravel + costLuxury + costAthletic 
Reliability (rel) relAirTravel × relLuxury × relAthletic 
Overall score 0.2 × rt + 0.3 × cost + 0.5 × rel 

Considering the trip booking example, Table 4 depicts the formulas used to calculate the 
QoS attribute values of the compositions, as well as the compositions’ overall score (as 
far as the weights assigned to the three attributes are concerned, these are the ones set by 
the user in the example – Table 3 and Figure 2), whereas Table 5 illustrates the 
calculation results of some of the combinations that are generated formulated  
by the algorithm. Among the combinations considered, the combination <SwissAir, 
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CostaNavarino, EuropeanCup> attains the highest score and is therefore selected to 
perform the particular adaptation. 
Table 5 QoS attribute value and overall score computation for service candidate combinations 

Combination 
QoS attribute Overall 

score rt cost rel 
<SwissAir, GrandResort, EuropeanCup> 1.66 1.87 0.44 1.113 
<SwissAir, GrandResort, SportsTicketBooker> 1.66 1.92 0.39 1.103 
<SwissAir, CostaNavarino, EuropeanCup> 1.7 2.17 0.68 1.333 
… … … … … 
<OlympicAirways, CostaNavarino, SportsTicketBooker> 1.75 2.07 0.59 1.267 

4.3 The IP-based algorithm 

As noted above, the IP-based algorithm formulates an IP problem, the solution of which 
is the adaptation to be performed on the scenario. In more detail, the IP problem 
formulation proceeds as follows: 

1 Initially the functionalities to be adapted in the original scenario are identified, the 
corresponding branches in the taxonomy containing potential candidates for the 
realisation of the functionalities are identified, and the potential candidates are 
filtered according to the QoS limits designated by the user. This step is identical to 
the corresponding procedure used in the exhaustive algorithm; when this step 
concludes, for each of the functionalities fi specified in the scenario under adaptation, 
a set of candidate functionality implementations ifC  is formulated. 

Recall that in our example, the functionalities to be adapted are ‘AirTravel’, 
‘Luxury’ and ‘Athletics’. For brevity in notations, we will use the ordinals 1, 2 and 3 
to denote the corresponding functionalities. Let us assume that C1 = {SwissAir, 
OlympicAirways}, C2 = {GrandResort, CostaNavarino} and C3 = {EuropeanCup, 
SportsTicketBooker}. 

2 For each set of candidate functionality implementations ,ifC  a set of variables 
,1 ,2 ,{ , , , }ii i i mx x x  is introduced, where mi denotes the cardinality of ,ifC  i.e., 

.ii fm C=  Variable xi,j effectively corresponds to the jth candidate for realising 
functionality fi and may be assigned either the value 1, if the jth candidate for 
realising functionality fi is actually selected to realise the functionality fi in the 
context of the adaptation, or 0, otherwise. Since exactly one of the candidates within 

ifC  will be selected for the realisation of fi, it follows that the sum of all variables xi,j 
must be equal to 1. 

According to the above, for each set of candidate functionality implementations ,ifC  
the following elements are added to the IP problem: 
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a A set of variables ,1 ,2 ,{ , , , },ii i i mx x x  where .ii fm C=  

b A set of constraints, ,{0 1}, :1 ;ii j fx j j C≤ ≤ ∀ ≤ ≤  note that since we employ 
IP, xi,j can only be assigned integer values and therefore possible assignments to 
each xi,j are only xi,j = 0 and xi,j = 1. In environments supporting mixed IP 
problems, i.e., problems where some of the variables accept only integer values 
whereas other variables may be assigned any real value, the constraint that the 
xi,j variables are integers is added using a declaration of the form ‘integer xi,j’. 

c a constraint ,1
1,fiC

i jj
x

=
=  for each of the categories .ifC  

In our example, the set of variables would be {x1,1, x1,2, x2,1, …, x3,2}, with x1,1 
corresponding to the first candidate service of the first functionality (i.e., SwissAir), 
x1,2 corresponding to the second candidate service of the first functionality (i.e., 
OlympicAir) and so forth. The set of constraints stemming that are added according 
to item 2, above, would be {0 ≤ x1,1 ≤ 1, 0 ≤ x1,2 ≤ 1, 0 ≤ x1,1 ≤ 1, …, 0 ≤ x3,2 ≤ 1}. 
Finally, the set of constraint introduced due to item 3 above would be {x1,1 + x1,2 = 1, 
x2,1 + x2,2 = 1, x3,1 + x3,2 = 1}. 

3 The next step focuses on the formulation of the objective function. The objective 
function is built according to the following algorithm: 
a A partial objective function POFcost is formulated for the cost QoS attribute: The 

use of a particular service implementation , ii j fs C∈  to realise functionality fi in 
the final adaptation would entail the payment of the cost associated with that 
service implementation; however, if the service is not selected, the cost is not 
entailed (recall that all QoS attributes, including cost, are normalised in the 
range [0, 1] with higher values being more preferable for the user). Since 1 each 
service si,j is associated with a corresponding binary variable xi,j introduced in 
step 2 above, and 2 according to the formulas introduced in Section 3.1, the 
overall value of the cost QoS attribute in a composition is the sum of the costs of 
the constituent parts, formula (7) reflects the overall value for the cost QoS 
attribute, taking into account both the service selections and the associated costs 
(n denotes the number of functionalities to be adapted in the scenario). 

( )( ), ,
1 1

cos
fiCn

i j i j
i j

x t s
= =

∗  (7) 

In our example, the partial objective function corresponding to the cost QoS 
attribute would be: 

1,1 1,2 2,1 3,20.7 0.55 0.62 0.6costPOF x x x x= × + × + × + + ×  (8) 

b A partial objective function POFrel is formulated for the reliability QoS 
attribute: Similarly to the case of the cost presented above, and taking into 
account that according to the formulas introduced in Section 3.1, the overall 
value of the reliability QoS attribute in a composition is the product of the 
reliabilities of the constituent parts, the formula reflecting the overall value for 
the reliability QoS attribute is: 
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( )( ), ,
11

fiCn

i j i j
ji

x rel s
==

∗∏  (9) 

However, this (partial) objective function is multiplicative, and thus cannot be 
used in an IP problem formulation, since IP requires that objective functions are 
linear (c.f. Section 3.3). To address this issue, the approach suggested in 
(Cardellini et al., 2017; Zeng et al., 2004) is followed, according to which the 
property 

( )log logi i
ii

a a  = 
 

∏  (10) 

is exploited to transform the product to a sum, effectively substituting all 
occurrences of rel(i) by log(rel(i)) and all products by sums. Effectively: 

( )( )

( )( )

, ,
11

, ,
1 1

log

log

fi

fi

Cn

rel i j i j
ji

Cn

rel i j i j
i j

POF x rel s

POF x rel s

==

= =

 
 = ∗
 
 

 
  = ∗
 
 

∏

 
 (11) 

and since exactly one of the xi,j variables will be equal to one for each i,  
formula (11) can be rewritten as: 

( )( )( ), ,
11

log
fiCn

rel i j i j
ji

POF x rel s
==

= ∗∏  (12) 

which adheres to the requirements for IP objective functions. 
Following the procedure described above, in the case of the trip booking 
example the partial objective function corresponding to the reliability QoS 
attribute would be equal to: 

1,1 1,2 2,1 3,2log(0.8) log(0.78) log(0.61) log(0.8)x x x x× + × + × + + ×  (13) 

c A partial objective function POFrt is formulated for the response time QoS 
attribute: In this formulation, the different elements are handled differently, 
depending on whether they are composed under a sequential or a parallel 
execution structure, according to the formulas listed in Section 3.1. The 
procedure for formulating the partial objective function for the response time 
QoS attribute proceeds in a bottom-up fashion as follows: 
• For each a set of candidate functionality implementations Cf = {if,1, if,2, …, 

if,n(f)}, the term: 

( ) ( ) ( ),1 ,1 ,2 ,2 , ( ) , ( )( ) f f f f f n f f n fRT f rt i x rt i x rt i x= × + × + + ×  (14) 

is formulated, modelling the response time of the functionality, taking into 
account the choice of a particular service implementation that will be made 
to realise functionality f. 
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• If two simple or composite functionalities f1 and f2 are combined by means 
of a SEQ construct into a composite functionality comp(f1, f2, SEQ), the 
terms expressing the response time of f1 and f2 are added up together to form 
the term conveying the runtime of composite service comp(f1, f2, SEQ), as 
shown in formula (15): 

( )( ) ( ) ( )1 2 1 2, ,RT comp f f SEQ RT f RT f= +  (15) 

• If two simple or composite functionalities f1 and f2 are combined by means 
of a FLOW construct into a composite functionality comp(f1, f2, FLOW), the 
maximum of the terms expressing the response time of f1 and f2 is calculated 
to form the term conveying the runtime of composite service comp(f1, f2, 
FLOW), as depicted in formula (16): 

( )( ) ( ) ( )( )1 2 1 2, , maxRT comp f f FLOW RT f RT f= +  (16) 

The formula corresponding to the root composition of the WS-BPEL scenario 
represents the computation of the partial objective function is formulated for the 
response time QoS attribute, POFrt. 
Cases 1 and 2 effectively create a formula that is directly compatible with the IP 
problem formulation (a sum of terms, where each term is of the form αijxi; c.f. 
Section 3.3). However, case 3 corresponding to the parallel composition entails 
the application of the max function, which is not permissible in an IP problem. 
This issue is addressed following the method described in Bisschop (2020), 
according to which an objective entailing the max function (termed a minimax 
objective) undergoes a transformation procedure to assume a form compliant 
with the IP problem formulation specifications. In more detail, an objective 
function containing the term 

,max p q q
p P

q Q

c x
∈

∈

 
 
 
  (17) 

is transformed as follows: 
• a new variable z is introduced, which represents the above term 
• a set of constraints of the form 

, ,p q q
q Q

c x z p P
∈

≤ ∀ ∈  (18) 

are added to the problem, to ensure that the newly introduced term z 
(representing the max function) is greater than or equal to each individual 
argument of the max function. 

Notably, this transformation can be applied either directly in the problem 
modelling stage, or internally by the software that is employed to calculate the 
solution to the IP problem. In the solution implemented in the context of our 
research, we have used the IBM ILOG CPLEX integrated software environment 
(IBM, 2013a, 2013b), which performs this transformation internally, hence the 
integer problem is formulated using the max function where needed, as dictated  
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by the formulas in Section 3.1, and presented to the IBM ILOG CPLEX 
software, which applies any necessary transformations and yields the solution to 
the problem. 
In the trip booking example, the partial objective function formulated for the 
response time QoS attribute is as shown in formula (19): 

( )1,1 1,2 2,1 2,2 3,1 3,20.75 0.8 max 0.91 0.95 , 0.75 0.65x x x x x x× + × + × + × × + ×  (19) 

d The overall objective function OF is calculated: The three partial objective 
functions, POFrt, POFcost and POFrel are synthesised into a single objective 
function using a simple weighted sum formula. More specifically: 

rt rt cost cost

rel rel

OF QoSWeights POF QoSWeightd POF
QoSWeights POF

= × + ×
+ ×

 (20) 

where QoSWeights is the vector expressing the weights of the QoS attributes are 
scenario level (c.f. Table 3 and Figure 2). 

The performance assessment of the two algorithms (ES and IP-based), in terms of 
online adaptation time and quality of the produced results, is presented in the next 
section. 

5 Experimental evaluation 

In this section, we present our experiments, aiming to evaluate the proposed algorithm, in 
terms of: 

a the quality of the formulated adaptations, i.e., how close the score of the adaptation 
formulated by the proposed algorithm is to the optimal one 

b the efficiency of the algorithm, corresponding to the time needed to compute the 
requested adaptations. 

Notably, the exhaustive algorithm presented in Margaris et al. (2013) computes the 
optimal adaptation, since it completely enumerates all possible adaptations and selects the 
one attaining the maximum score. 

For the experimental evaluation, we utilised a machine equipped with one Celeron 
N2840@2.16GHz with 4 GB of RAM, which hosted the BPEL scenarios (XML files) 
and the service repository. The latter was the host for the representation of the 
subsumption relationships and QoS characteristics of the services. For the purposes of the 
evaluation we generated 30 WS-BPEL scenarios of varying complexity and size. More 
specifically, we formulated a search grid considering as parameters the number of 
functionalities per scenario (3, 4, 7 and 9), number of implementations per functionality 
(ranging between 3, 6, 9 and 12) and number of parallel constructs within a scenario 
(ranging between 0 and 4, with the number of parallel constructs being less than N/2), 
and the vertices of this grid were used to create the search scenarios. The properties of the 
set of generated WS-BPEL scenarios are listed in Table 6, while the 30 WS-BPEL 
scenarios used in this experiment are provided in SoDa Lab (2020). 
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Table 6 Properties of the generated WS-BPEL scenarios set 

Property Value 
Number of WS-BPEL scenarios 30 
Minimum number of functionalities 3 
Maximum number of functionalities 9 
Mean number of functionalities 5.8 
Minimum number of implementations for a functionality 3 
Maximum number of implementations for a functionality 12 
Mean number of implementations for a functionality 7.4 
Minimum number of alternative compositions (exhaustive enumeration) 153 
Maximum number of alternative compositions (exhaustive enumeration) 2,177,280 
Mean number of alternative compositions (exhaustive enumeration) 485,956.6 
Median of alternative compositions (exhaustive enumeration) 95,040 
Minimum number of parallel constructs within a scenario 0 
Maximum number of parallel constructs within a scenario 3 
Mean number of parallel constructs within a scenario 1.23 

Each scenario was run 100 times and, in each execution, the weights of the three QoS 
attributes (runtime, cost, reliability) were randomly set in the range [0, 1] and 
subsequently normalised in order to ensure that rtw + cw + relw = 1. 

Figure 5 Execution time required by the two algorithms 
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Figure 5 illustrates the execution time required by the two algorithms used in our work. 
We can clearly see that, while the processing time of the ES algorithm (which creates and 
evaluates all possible combinations between WSs, in order to select the one achieving the 
highest score) increases exponentially when the number of combinations that need to be 
tested increases (note that the y-axis follows a logarithmic scale), the  
IP-based algorithm, on the other hand, manages to keep the execution time at very low 
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levels, even in the most demanding scenarios, consisting of nine services to be 
recommended, with over 2 M alternative compositions. This indicates that the IP-based 
algorithm can be used in online environments, since the overhead introduced is 
practically negligible. 

Figure 6 Optimisation time required by the ES algorithm (see online version for colours) 

 

Figure 6 elaborates on the optimisation time required by the ES algorithm, considering 
the number of services in the BPEL scenario and the average number of alternatives per 
service. We can observe that the optimisation time increases exponentially with both 
parameters, while for scenarios having a moderate number of services (seven or more) 
and a moderate number of alternatives per service (exceeding six alternatives on average 
from scenarios with seven services or exceeding 3–4 on average for scenarios with nine 
services), the optimisation time surpasses 1 second. 

Figure 7 Optimisation time required by the IP-based algorithm (see online version for colours) 

 

Correspondingly, Figure 7 elaborates on the optimisation time required by the IP-based 
algorithm, considering the number of services in the BPEL scenario and the average 
number of alternatives per service. We can observe that the optimisation time increases 
very slightly as the number of services and/or the number of alternative implementations 
per service increases. 
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Figure 8 Comparison of the scores of the solutions produced by the two algorithms 
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Figure 8 illustrates our experimental findings regarding the quality of the execution score 
achieved by the IP algorithm, in relation to the quality of the solution produced by the ES 
algorithm (which is the optimal one, since the ES algorithm considers all candidate 
solutions). For each scenario (represented as an item on the horizontal axis), the average 
score quality over the 100 runs with randomised QoS attribute weights is depicted, while 
the error bars represent the minimum and maximum score quality observed for that 
particular scenario. We can observe that the quality of the solution computed by the IP 
algorithm is greater than or equal to 97% for all cases, while the global average score 
quality of the IP algorithm (i.e., the average quality of the solutions computed by the IP 
algorithm over the 100 randomised runs of each scenario in relation to the respective 
scores of produced by the exhaustive algorithm) is 99.37%. For 24 scenarios, the IP 
algorithm was able to compute an optimal solution for at least one QoS attribute weight 
combination. Overall, in 62% of the tested cases, the solution computed by the IP 
algorithm was identical to the one computed by the exhaustive algorithm. 

In general, scenarios comprising of higher numbers of constituent services, exhibit a 
larger deviation between the score of the solution computed by the IP algorithm and the 
optimal one, computed by the ES algorithm. However, the performance gains, when the 
number of services increases, are more substantial. 

In comparison with other algorithms presented in the literature, the proposed  
IP-based algorithm provides a speedup of 2–3 orders of magnitude against the 
OPTIM_HWEIGHT algorithm (Comes et al., 2010), 1–2 orders of magnitude as 
compared to the QSSAC algorithm (Xia et al., 2011) and 2–4 orders of magnitude against 
the WSC−CGA algorithm (Liu et al., 2015). 

Overall, the experiments clearly demonstrate that the IP-based algorithm can provide 
very substantial speedup over both the exhaustive algorithm, as well as other adaptation 
algorithms presented in the literature, with practically negligible effects on the quality of 
the formulated solutions. Since the overhead introduced by the proposed algorithm is 
small, the proposed algorithm can be directly integrated into WS-BPEL execution 
engines, to cater for online adaptation of user requests. 
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6 Conclusions and future work 

In this work, an IP-based algorithm for adapting the execution of WS-BPEL scenario 
invocations, recommending services according to criteria and policies set by the user was 
presented. The proposed algorithm exploits multiple characteristics of the WSs and the 
WS-BPEL language to formulate an IP problem which is then solved to optimise the  
WS-BPEL scenario execution. The characteristics exploited are clearly domain 
dependent. The algorithm design process, however, can be used to formulate analogous 
algorithms in other domains. Each of those algorithms should be verified and validated, 
considering appropriate characteristics and datasets from the relevant domains. The 
proposed algorithm was validated through a set of experiments, using scripts with 
varying size and complexity. These experiments showed that the IP-based algorithm’s 
execution time remains low, even in the most demanding scenarios, addressing thus an 
important shortcoming of the ES algorithm, which guarantees solution optimality on the 
one hand, however its execution time grows exponentially with the number of 
functionalities within the scenario to be adopted, as well as with the number of candidate 
services that can be used to realise a functionality. The proposed algorithm was also 
compared to other algorithms that are presented in the literature and was found to reduce 
the adaptation computation time by 1–4 orders of magnitude. As far as the adaptation 
quality is concerned, the solutions produced by the IP-based algorithm are very close to 
the optimal one, with their overall score lagging behind the score of the optimal one less 
than 2.9% in all cases and less than 0.5% on average. The above results clearly 
demonstrate the feasibility of the proposed algorithm, as well as its suitability for an 
online usage, since adaptations are computed in less than 0.003 seconds, therefore any 
incurred overhead is negligible. 

Our future work will focus on handling of loops and conditional execution constructs 
in WS-BPEL scenarios; this can be supported through branch prediction and loop 
unrolling techniques (Bernstein, 1996), as well as by gathering statistical information 
from prior scenario executions and using it as input to the adaptation process. 
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