

 Int. J. Web Engineering and Technology, Vol. 15, No. 3, 2020 307

 Copyright © 2020 Inderscience Enterprises Ltd.

An integer programming-based algorithm for
optimising the WS-BPEL scenario execution
adaptation process

Dionisis Margaris*
Department of Informatics and Telecommunications,
University of Athens,
Athens, Greece
Email: margaris@di.uoa.gr
*Corresponding author

Dimitris Spiliotopoulos,
Apostolos Kardiasmenos and
Dimitrios Pantazopoulos
Department of Informatics and Telecommunications,
University of the Peloponnese,
Tripoli, Greece
Email: dspiliot@uop.gr
Email: kardiasm@gmail.com
Email: d.pantazopoulos@yahoo.gr

Abstract: In this work we present an integer programming-based algorithm for
adapting the execution of WS-BPEL scenarios, through the dynamic selection
of the services to be invoked, according to criteria and policies set by the user.
The proposed algorithm is experimentally evaluated both in terms of adaptation
quality and adaptation computation overhead. The experimental results
demonstrate that the proposed approach achieves to considerably improve
adaptation speed, as compared to the exhaustive search algorithm which is
considered as a baseline, while at the same time maintaining adaptation quality.

Keywords: web services; WS-BPEL; business processes; personalisation;
adaptation; integer programming; quality of service; QoS; evaluation.

Reference to this paper should be made as follows: Margaris, D.,
Spiliotopoulos, D., Kardiasmenos, A. and Pantazopoulos, D. (2020) ‘An integer
programming-based algorithm for optimising the WS-BPEL scenario execution
adaptation process’, Int. J. Web Engineering and Technology, Vol. 15, No. 3,
pp.307–332.

Biographical notes: Dionisis Margaris is a Postdoc Researcher at the
Department of Informatics and Telecommunications at the University of
Athens and an Adjunct Lecturer in the Department of Digital Systems at the
University of the Peloponnese, in the area of Information Systems. He has
received his degree, his Master’s degree and his PhD from the Department of
Informatics and Telecommunications at the University of Athens. He has
published more than 50 papers in international journals, conferences and books
and his research interests include recommender systems, information systems,
computer programming, databases systems and social networks.

 308 D. Margaris et al.

Dimitris Spiliotopoulos received his BSc, MA, and MPhil degrees from the
University of Manchester, UK, and PhD degree from the Department of
Informatics and Telecommunications, University of Athens, Greece, in 2009.
He works in information systems at the Department of Informatics and
Telecommunications, University of Peloponnese, Greece. His research interests
include information systems, social media analysis, usability, accessibility, and
recommender systems. He has served as a PC member of many international
journals and conferences, while he has also participated in more than ten
international and national projects.

Apostolos Kardiasmenos has been working in the banking sector and in
particular in the field of electronic payment systems for over a decade as a
developer/analyst. He has acquired his Bachelor’s degree in Informatics and
Telecommunications from the University of Peloponnese and a Master’s degree
in the field of computational linguistics in an inter-university course between
the national and Kapodistrian University of Athens and the National Technical
University of Athens. His main area of interest covers programming and
administration of online transaction processing and switching systems,
transaction key management applications and online transaction fraud
prevention and detection solutions.

Dimitrios Pantazopoulos is a secondary education school teacher in the area of
Mathematics, also has degree in Informatics and Telecommunications from the
University of Peloponnese and postgraduate degree in Information Systems
from the Hellenic Open University. He also has extensive experience in mobile
communication networks as he was held different positions in big
telecommunications companies. His research interests include information
systems, probabilities, stochastic processes, cryptography and educational
software.

1 Introduction

Contemporary web services (WSs) are distributed applications where a single user can
perform complex computing processes, without needing to consider the technological
details on the part of the service provider and Web Services Business Process Execution
Language (WS-BPEL) is the standard language for designing and executing business
processes that encompasses the execution of multiple WSs (Fu et al., 2004; Hallwyl et al.,
2010). The communication specifications of such applications are usually based on
widespread and common protocols, such as HTTP for transport and JSON&XML and its
derivatives for parameter encoding, and the execution of the application is routed through
a distributed execution engine available to the single user. These widespread protocols
allow system designers to organise individual services in order to build higher-level
business services. For example, users who plan their vacations abroad and visit the
website of a travel agency, are required to fill in the appropriate forms for the destination
of the trip and the means of transport of their choice (airplane, boat, bus, etc.), they may
select the category of the hotel they would like to stay in (e.g., a three-star hotel) and any
venues they would like to attend, such as a football or basketball match, visiting a
museum or attending a concert or theatre performance; then, after a user submits the
request, the software of the travel agency communicates with each of the information

 An integer programming-based algorithm 309

systems that perform individual purchases (e.g., airline company, hotel, theatre, etc.) to
complete the reservations designated by the user.

The procedure described above necessitates that the WSs that will be invoked in the
WS-BPEL scenario are known in advance. However, in the modern internet, an
individual service (e.g., booking a flight or checking for available rooms in a hotel) is
typically offered by multiple providers, and each provider makes a service available
under (generally) different service quality parameters (quality of service – QoS), such as
cost, response time, reliability and so forth (O’Sullivan et al., 2002). In this context, it is
highly desirable for users to be able to specify qualitative criteria that should be fulfilled
by the service they receive; and subsequently, the execution engine should adapt the
realisation of the service provision to each user, by selecting WSs that conform to the
QoS specifications set by the user.

For example, in a holiday planning WS-BPEL scenario such as the one described
above, the user may request an airline recommendation (limiting thus the choice of
transportation means to air travel only), while at the same time requesting a reservation at
a particular hotel H and also indicating that she wants to attend an art performance; and in
the QoS domain, the user may specify that the price of the flight is ‘low’, whereas the
quality of the art performance is ‘high’, with the total price of the trip being ‘moderate’.
Then the system should find WSs realising the requested functionalities (air ticket
purchase, art performance ticket purchase), subject to the restrictions designated by the
user (‘low’ air fare, ‘high’ performance quality), combine them with the (rigidly
specified) reservation to hotel H, and ascertain that the cost of the whole combination is
‘moderate’.

A straightforward approach to implementing the identification of the service
combination that most closely matches the user-designated functionality and QoS
specification would be to generate all possible combinations that the available WSs can
form and compute a fitness score for each one (Margaris et al., 2013), under an
exhaustive search (ES) approach. However, in real-world scenarios, the number of WSs
that realise each functionality is high, hence the cost of the generation of all possible
service combinations is prohibitively high. The solution to this problem can be given by
using integer programming (IP) techniques (Schrijver, 1998), which are widely used for
optimising constraint problems, by restricting some or all of the objective function’s
variables to be integers.

In this work, we present an IP-based (Schrijver, 1998) recommendation algorithm for
optimising the WS-BPEL scenario adaptation process that accommodates QoS criteria set
by users/clients. The main objective is to create an algorithm that can efficiently compute
the adaptations that satisfy the QoS criteria set by users, while at the same time
maintaining the optimality of the computed adaptations, i.e., guaranteeing that the
computed adaptations are the optimal ones, under the specified QoS restrictions.

The rest of the paper is structured as follows: Section 2 overviews related work.
Section 3 presents the necessary foundations for our work, which include QoS concepts,
subsumption relations and IP. Section 4 presents the proposed IP algorithm, while for
self-containment purposes we briefly present the ES algorithm introduced in Margaris
et al. (2013), which also performs QoS-based adaptation of WS-BPEL scenario
execution. The ES algorithm is used as a baseline in the experimental evaluation. In
Section 5 we report on experiments conducted to assess performance of the proposed
technique, both in terms of efficiency (the time needed to compute the requested
recommendations) and effectiveness (adaptation quality), aiming to substantiate the

 310 D. Margaris et al.

utility of the presented algorithm and its practical applicability. Finally, Section 6
concludes the paper and outlines the future work.

2 Related work

Nowadays, information systems in the internet are very frequently implemented by
composing WSs offered by individual providers, since the adaptation process of WS
scenarios is a topic that has attracted considerable research efforts over the last years,
ranging from QoS (de)composition and optimisation to dynamic prediction and
uncertainty, and from exception resolution to fault-tolerance approaches. In the next
paragraphs an overview of works in the aforementioned areas is presented.

Several works exist which aim at optimising WS composition process. Chen et al.
(2016) present a QoS-aware WS composition method by multi-objective optimisation to
assist users make variable decisions. The problem of QoS-aware WS composition is
formulated to a multi-objective optimisation model where the individual optimisation
objective is either QoS performance or QoS risk, while an efficient e-dominance
multi-objective evolutionary algorithm is developed to solve the presented model.
Rodriguez-Mier et al. (2016) present a theoretical analysis of graph-based service
composition utilising its dependency with service discovery. Their work defines a
composition framework integrating fine-grained I/O service discovery that enables
graph-based composition generation. The composition includes the semantically relevant
set of services for input-output requests. Their proposed framework also presents an
optimal composition search algorithm for extracting the optimal composition from the
graph by minimising the number and the size of services, as well as several graph
optimisations for improved system scalability. The approach proposed by Xia et al.
(2011) allows for specification of QoS constraints, which drive the adaptation process;
the adaptation process aims to minimise an objective function for the entire web service
orchestration (WSO), employing either heuristic (OPTIM_HWEIGHT) or brute force
(OPTIM_S) algorithms. Hammas et al. (2015) propose a WS architecture supporting
global QoS optimisation, as well as dynamic WS composition. They also propose an ant
colony optimisation-based algorithm for QoS aware WS selection. Liang et al. (2019)
focus on WS composition for internal complementarity likelihood cases. More
specifically, they address the problem of QoS-aware web service selection with internal
complementarity (WSS-IC). This is achieved by transforming this problem into a
multi-dimensional multi-choice knapsack problem (MMKP), proving that their proposed
transformation has non-polynomial time complexity. They demonstrate that existing
approaches to MMKPs are not computationally feasible to resolve QoS-aware WSS-IC
by performing complexity analysis. Finally, they propose an iteratively improving
framework for deriving the solution, iteration by iteration, while taking into account both
solution structure and QoS constraints, where, at each iteration, the current solution gets
improved by solving a disjunctively constrained knapsack problem. Margaris et al.
(2013) perform a horizontal QoS-based adaptation, supporting both the sequential and
parallel execution structures within the BPEL scenario. However, this approach uses very
limited QoS-based criteria (optionally specifying lower and upper bounds for each QoS
attribute), hence running the risk of inferior overall QoS of the formulated solutions when
compared to the possibly attainable optimal composition QoS, especially for the cases
where CF has to address known issues such as grey sheep and cold start. Lu and Xu

 An integer programming-based algorithm 311

(2017) propose and implement a web-based system that utilises distributed knowledge for
intelligent service composition and adaptive resource planning. Gupta et al. (2018b)
present a literature review of different tools and approaches, which are available for
WSO. Furthermore, they compare earlier WSO approaches, taking into account different
benchmarks, and identify the needs of the improvements. Machorro-Cano et al. (2020)
propose the design of a language for internet-of-things (IoT) WSs composition, which
considers the WSO and choreography in order to define business processes in a supply
chain in the healthcare domain, while at the same time discuss important literature on
business processes, IoT WSO, IoT WSs choreography and IoT WSs coordination.
Furthermore, they propose the design of a language for IoT WS composition, presenting
the expressivity of the language, the WSs orchestrating process and choreography
characteristics. Gupta et al. (2018a) propose a QoS-based fault-detection and
fault-tolerance approach which uses the dynamic WSO. Their approach also considers the
users’ preferences and WSs’ QoS at runtime. Their approach uses reliability in two
phases: in the first phase a trust-based WS filtering mechanism is used, achieving
reliability at component level before a fault occurs, while in the second phase, a decision
for dynamic recovery is taken, whenever a fault is detected in a process.

Zeng et al. (2004) present a QoS-aware middleware platform, namely AgFlow, which
supports quality driven WS compositions, by maximising user satisfaction expressed as
utility functions over QoS attributes, while at the same time satisfying the constraints set
by both the user and the structure of the composite WS. In this work, the overall
execution time of each candidate solution is computed using the critical path algorithm,
an approach that limits the amount of optimisation that can be achieved through the use
of IP techniques and thus resulting in increased adaptation computation overheads.
Cardellini et al. (2017) present a software platform supporting QoS-driven adaptation of
WS-oriented systems, named MOSES, which integrates within a unified framework
different adaptation mechanism, achieving a greater flexibility in facing various operating
environments and the possibly conflicting QoS requirements of several concurrent users.
The per flow runtime adaptation presented in this work and detailed in Cardellini et al.
(2012) also employs a linear programming model to compute the optimal adaptation, the
model adopted in MOSES however groups users into service classes, where for each user
class the importance of different QoS attributes is pre-determined and spans across all
WS-BPEL processes invoked by users within this class. This arrangement allows
statistics from previous executions to be used for future adaptations, but on the other
hand limits the flexibility available to users, who may want vary QoS attribute
importance settings according to individual WS-BPEL scenario invocation needs, e.g.,
maximise cost importance for one invocation, while maximising reliability importance
for another invocation.

In order to model services with dynamically changed attributes and uncertain effects,
Wang et al. (2016) propose an approach that introduces branch structures into composite
solutions to cope with uncertainty in the service composition process. Liu et al. (2015)
propose a WS composition method based on QoS dynamic prediction and global QoS
constraints decomposition. Their approach includes two critical phases. The first phase
happens before service composition, by decomposing global QoS constraints into local
constraints, thereby transforming the WS dynamic composition problem to a local
optimisation one. The second phase happens at runtime, using predicted QoS values to
select the optimal WS for the current abstract service. Zhang and Lyu (2017) present a
WS search engine, namely WSExpress that is able to find the desired WS. WSExpress

 312 D. Margaris et al.

ranks the publicly available WS by both functional similarities to user queries and
non-functional QoS characteristics of the WSs. Furthermore, WSExpress can
automatically replace a failed WS with a suitable one. This work employs a greedy
algorithm to determine the adaptation that best fits the optimisation goal, and therefore
the approach proposed therein is prone to calculating suboptimal solutions, due to the
presence of local maxima in the search space. Zatout et al. (2018) present an architecture
for the adaptation and monitoring of WS composition using a set of components that
cooperate in order to ensure the proper operation of WSO; the presented architecture is
based on the dynamic selection of alternative WSs. Furthermore, they provide a case
study of Bookstore process to illustrate their proposal and discuss some implementation
results, with mainly focusing on the throughput and response time attributes.

Some works in the area explicitly address the reliability/fault-tolerance aspects that
are critical in a number of domains, given the distributed and error-prone nature of the
internet. Kareliotis et al. (2009) present the ASOB middleware, which integrates
QoS-based adaptation with exception resolution. The presented middleware intercepts
WS invocation failures and distinguishes business system faults from logic faults,
remedying the first category through replacing failed WSs by ‘next best’ solutions;
exceptions stemming from business logic faults are left to the WS-BPEL scenario
designer to resolve through appropriate handlers, since they cannot be automatically
addressed. Song and Tilevich (2019) enhance compiler-generated execution WSO with
equivalence to efficiently increase reliability. They also introduce a dataflow-based
domain-specific language, whose dataflow specifications include the implicit declarations
of equivalent micro-services, as well as their execution patterns. Furthermore, their work
introduces new equivalence workflow constructs, in order to automatically generate
reliable workflows and execute them efficiently.

The approach proposed in this paper extends the state-of-the-art in the WS-BPEL
scenario execution adaptation by providing collectively the following features:

• formulating the task of finding an optimal adaptation as a multicriteria IP
optimisation problem, which can be efficiently solved using standard IP problem
solver software

• supporting both sequential and parallel service compositions within the WS-BPEL
scenario

• considering multiple QoS dimension in an extensible fashion, allowing the
accommodation of additional QoS dimensions as needed

• providing flexibility for users to select the WS-BPEL scenario adaptation goals at a
per-invocation granularity.

However, none of the aforementioned works present an IP recommendation algorithm
that takes into account QoS criteria set by users, aiming at both minimising the adaptation
formulation time and maximising the recommendation adaptation quality.

 An integer programming-based algorithm 313

3 Background on QoS attributes, subsumption relationships and IP
concepts

The following sub-sections include a summary of the concepts and underpinnings from
the domains of WS QoS attributes, WS subsumption relationships and IP that are used in
our work.

3.1 WSs QoS attributes

WS QoS attributes are quantities that are able to describe measurements of the overall
performance of a WS. Gouscos et al. (2003) define QoS attributes for service latency
(time elapsing between invocation and receiving of the reply) and throughput (number of
requests that are executed per time unit), while O’Sullivan et al. (2002) and Comerio
et al. (2007) consider invocation cost (monetary) and reliability (the degree of being
capable of maintaining the service and service quality, measured, e.g., as number of
failures per time unit). For conciseness purposes and without loss of generality, in this
paper we will consider only the attributes cost (c), response time (rt) and reliability (rel),
adopting their definitions from O’Sullivan et al. (2002) and Comerio et al. (2007).
Lower-level QoS aspects, e.g., network speed, reliability and latency, are taken indirectly
into account, since they reflect on higher-level aspects, e.g., response time (affected by
network speed and latency) and service reliability (affected by the network-level
reliability). The detailed investigation of the interplay between network-level QoS
aspects and service-level QoS aspects is considered part of our future work.

WS-BPEL is the standard language for designing and executing business processes
that encompass the execution of multiple WSs. In the context of a WS-BPEL scenario
execution, multiple WSs, s1, s2, …, sn are invoked. A user may want to specify constraints
on the QoS delivered by each individual WS executed in the context of a specific
invocation; to this end, the user may provide QoS specifications regarding the upper and
lower bounds for each QoS attribute, for each of the services sj. In other words, for a sj
service included in an WS-BPEL scenario, the user may provide the following two
vectors:

• MINj(minrt,j, minc,j, minrel,j)

• MAXj(maxrt,j, maxc,j, maxrel,j).

where vector MINj designates the lower bounds of the QoS attributes for the service
implementation that will be selected to realise the functionality of sj (e.g., booking a
hotel), while vector MAXj designates the corresponding upper bounds. In addition, the
user provides a weight vector W(rtw, cw, relw) that indicates the importance of each
attribute in the context of the particular invocation of the WS-BPEL scenario. Effectively,
the weight factor value is multiplied by the value of the corresponding QoS attribute, and
these products are then aggregated in order to produce an overall score for the scenario. If
the invocation request does not include a QoS attribute weight specification, then all
attributes are considered of equal weight, i.e., the weight of each QoS attribute is set to
1/Nq, where Nq denotes the number of qualitative attributes considered. If, for a service,
the minimum value for some qualitative attribute is not provided, then the lower bound is
set to 0. Correspondingly, if the maximum value for some qualitative attribute is not
provided, the upper bound is set to 1. Note that while the upper and lower bound vectors

 314 D. Margaris et al.

apply to each individual service si, the weights apply to the whole composition, rather
than to individual services, since the weight reflects the importance attached to each QoS
characteristic for the process as a whole, and not to its constituents.

As far as attribute values are concerned, clearly different attributes may have different
measurement units (e.g., requests/month for throughput vs. euros for cost), and different
magnitudes (e.g., the requests/month attribute may scale to a range of billions, while a
price may be in the range of thousands). In order to have meaningful results from
combining such attribute values, we consider that all attributes are normalised in the
range [0, 1], through the application of a standard normalisation formula (He and Wu,
2008):

min()()
max() min()

v vnorm v
v v
−=

−
 (1)

where v is the value to be normalised, while min(v) and max(v) are the minimum and
maximum values of the corresponding attribute in the database extension. Furthermore,
we consider that larger values correspond to higher QoS levels: for attributes where the
inverse holds (such as price and latency), it is straightforward to transform their values to
a ‘higher is better’ scheme, by altering the normalisation formula above to

min()() 1
max() min()

v vnorm v
v v
−= −

−
 (2)

This approach is typically followed for the handling of QoS attribute values in the context
of WS selection and composition (Halfaoui et al., 2015).

WS-BPEL scenarios compose multiple individual WSs to composite business
processes, which are themselves (composite) WSs. The execution of individual WSs may
proceed sequentially (i.e., serially, where the execution of the next service commences
when the execution of the previous one has concluded) or in parallel (services are
executed concurrently). To calculate the quality of composite WSs consisting of
individual WSs ws1, …, wsn, which are executed sequentially or in parallel and have QoS
features equal to (rt1, c1, rel1), …, (rtn, cn, reln), respectively, the formulas outlined in
Table 1 (Canfora et al., 2005) are employed.
Table 1 Computation of composite services QoS

QoS attribute

Response time Cost Reliability
Serial composition

1

n
i

i
rt

=
1

n
i

i
c

=
1

n
i

i
rel

=∏

Parallel composition maxi(rti)
1

n
i

i
c

=
1

n
i

i
rel

=∏

As can be seen in Table 1, the response time of a serial structure is equal to the sum of
the response time of its individual components, while the response time of a parallel
structure is equal to the maximum value of its individual components. This difference is
important for the subsumption process, as different search strategies should be used to
optimally tailor the script to the user’s QoS specifications.

 An integer programming-based algorithm 315

Table 2 Example of repository contents.

Service Response time Cost Reliability
A1 0.6 0.6 0.6
A2 0.8 0.8 0.8
B1 0.2 0.2 0.2
B2 0.7 0.7 0.7

For example, let us consider a WS-BPEL scenario involving the sequential execution of
services A and B. For an execution of this scenario, the weight vector for QoS features
has been set to W = (1, 1, 0), while at the time of the WS-BPEL scenario execution, the
services listed in Table 2 are known. Then, the adaptation engine should select services
A2, B2, with a score of 2, since for these services we have:

() ()()2 2 2 2, 1 , 1 2A B A Bscore sum rt rt sum c c= ∗ + ∗ = (3)

It is clear that this score is higher than any other combination. In a scenario, however,
involving parallel execution, the executing engine should select services A2 and B1, since
they provide an overall score equal to

() ()()2 2 2 22 max , 1 , 1 1.7A B A Bscore rt rt sum c c= ∗ + ∗ = (4)

which is higher than the score of 1.3 achieved by the combination (A2, B2).

3.2 Subsumption relationships

When a WS-BPEL scenario is adopted to match the QoS designations provided by the
user, the execution adaptation process selects WS service implementations to realise
functionalities that appear in the context of the WS-BPEL scenario. Therefore, the
adaptation software needs to be able to test whether within a particular execution, a WS
service implementation A can realise some requested functionality B. In this work, we use
the service matchmaking relationships known as subsumption relationships (Bellur and
Kulkarni, 2007) to address this issue. More specifically, the subsumption relationships
used and the rules defining which subsumption relationships dictate service
replaceability, are as follows:

1 A exact B, if and only if A provides the same functionality as B. Clearly in this case
service A can be used to deliver the functionality B requested in the WS-BPEL
scenario.

2 A plug-in B, if and only if A provides a more specific function than B. For example,
service Β could belong in the ‘travel’ category, whereas Α could belong to the more
specific ‘air travel’ (sub)category. In this case, whenever the functionality of B is
required, the functionality of A could be used, since it provides a specialisation of the
functionality provided by B.

3 A subsume B, if and only if A provides more generic functionality than B. In this case
A cannot be directly used whenever B’s functionality is required. For example, if B
corresponds to the ‘sea travel’ functionality, while A implements a ‘trip’
functionality, then we cannot (always) use service A to realise functionality B, as

 316 D. Margaris et al.

service A may only realise ‘air travel’ and ‘car travel’, failing thus to deliver the
requested ‘sea travel’. We note here that in some cases service A could be used to
realise functionality B, however this cannot be determined automatically by the
adaptation algorithm.

4 A fail B, in all other cases. When A fail B holds, A cannot be used to deliver the
functionality B.

For more information on subsumption relationships, the interested reader is referred to
(Bellur and Kulkarni, 2007).

3.3 Integer programming

IP is a methodology for optimising problems where integer values are assigned to
decision variables (Schrijver, 1998). IP programming is a sub-domain of linear
programming where decision variables may be assigned with generic real values. The
additional requirement for computation of integer solutions only makes IP problems
harder to solve than linear programming problems, increasing their complexity; however,
a number of optimisation techniques which limit the solution search space (Bixby et al.,
2004) render IP problem solution computation highly efficient. Furthermore, IP solvers
employ a multitude of techniques to speed up the computation of solutions to IP
problems. Indicatively, such techniques include cutting planes, presolve, branching rules
and branch and bound methods, heuristics, node presolve and probing on dives (Bixby
et al., 2004), with each speed up factor providing a speed up ranging from 53.7% (cutting
planes) to 1.1% (probing on dives). The potential to apply individual methods and
explore the effectiveness of each of them on the speed and quality of the solution
computation will be considered in the context of our future work.

IP problems involve a set of decision variables, x1, x2, …, xn, the values of which need
to be computed, in order to maximise (or minimise) an objective function which takes the
following form:

1 1 2 2 n nc x c x c x+ + + (5)

where c1, c2, …, cn are problem-specific coefficients. The solution, which effectively
resolves to a set of value assignments to decision variables (x1 = v1, x2 = v2, …, xn = vn)
where vi ∈ Z, ∀i: 1 ≤ i ≤ n, may be subject to constraints on the values assigned to
variables, which take the following form:

11 1 12 2 1 1 1

21 1 22 2 2 2 2

1 1 2 2

n n

n n

m m mn n m m

a x a x a x relOp b
a x a x a x relOp b

a x a x a x relOp b

+ + +
+ + +

+ + +







 (6)

where aij, bi are problem-specific coefficients and relOpi is a relational operator (>, ≥=, =,
≤, <, ≠), ∀i: 1 ≤ i ≤ n, ∀j: 1 ≤ j ≤ m.

The formulation of the WS-BPEL scenario adaptation problem as an IP problem and
its solution is presented and analysed in the following section.

 An integer programming-based algorithm 317

4 The IP algorithm

The proposed algorithm utilises the information described in Sections 3.1 and 3.2 and
formulates an invocation-specific IP problem, the solution of which corresponds to the
desired adaptation of the adaptation of the execution of the WS-BPEL process to match
the QoS specifications designated by the user. The steps taken by the algorithm are as
follows:

1 Firstly, the algorithm extracts the functionalities for which recommendations are
requested for.

2 Subsequently, for each such functionality, it retrieves the WSs that are candidate to
be used for the realisation of this functionality in the context of the particular
WS-BPEL scenario invocation.

3 Finally, it formulates and solves the IP problem, determining the optimal WS-BPEL
scenario adaptation for the particular scenario invocation request. The QoS
specifications given by the user are effectively used as problem-specific coefficients
of the IP problem (c.f. Section 3.3).

In the Section 4.3, we will detail the three steps of the proposed IP algorithm. To
illustrate the proposed approach, the case of adapting a travel planning business process
will be used; the example WS-BPEL scenario, together with the dataset that will be used
in the example, are described in Section 4.1. For completeness, in Section 4.2 we present
the exhaustive adaptation algorithm, which every possible service combination,
calculates the overall QoS of the corresponding composition, and finally selects as a
solution the service combination providing the highest overall QoS (Margaris et al.,
2013); the exhaustive algorithm is used as a baseline in the experimental evaluation,
presented in Section 5.

4.1 Example WS-BPEL scenario and dataset

To exemplify the proposed approach, we will use the case of adapting the invocation of a
simple WS-BPEL scenario. This scenario describes a business process of booking a trip
(modelled as a WS-BPEL scenario BookTrip), which includes the functionalities of
finding an airline ticket, booking a luxury hotel room and attending an athletic event. The
booking of air tickets is performed first, and afterwards the hotel reservation and the
athletic event ticket purchase proceed in parallel, as indicated by the SEQ and FLOW
constructs in Figure 1.

Figure 1 Business process execution request example

BookTrip
 SEQ
 (name=bookAirTravel, operation=AirTravel)
 FLOW
 (name=bookLuxury, operation=Luxury)
(name=bookAthletic, operation=Athletic)

 318 D. Margaris et al.

In our example, we consider a particular scenario invocation where the QoS weights and
the upper and lower bounds for the QoS attributes for each functionality are as shown in
Table 3; the respective specifications in the form of an XML file are depicted in Figure 2.
In Table 3 we can observe that the user does not impose any restrictions about the
minimum or maximum response time for book flight (bookAirTravel), however s/he sets
minimum and maximum bounds of 0.29 and 0.89, respectively, for the cost of the
particular operation. Similarly, the user requests that the reliability of the bookAirTravel
operation would not be less than 0.45, while no restrictions are imposed for the maximum
value of reliability. Analogously, constraints are defined for the other two services
(bookLuxury and bookAthletic).
Table 3 Specifications of QoS weights and bounds

QoSWeights = (rt: 0.2, c: 0.3, rel: 0.5)
Functionality QoS bounds vectors
bookAirTravel MinbookAirTravel = (rt: null, c: 0.29, rel: 0.45)

MaxbookAirTravel = (rt: null, c: 0.89, rel: null)
bookLuxury MinbookLuxury = (rt: null, c: 0.51, rel: 0.41)

MaxbookLuxury = (rt: null, c: 0.98, rel: null)
bookAthletic MinbookAthletic = (rt: null, c: null, rel: 0.31)

MaxbookAthletic = (rt: null, c: 0.9, rel: null)

Figure 2 XML representation of the QoS weights and bounds

<?xml version="1.0" encoding="utf-8">
<invokeProcess target="BookTrip">
<QoSweightsrespTime="0.2" cost="0.3" reliability="0.5" />
<serviceInvocationQoS>
<invoke name="bookAirTravel" minCost="0.29"

maxCost="0.89" minReliability="0.45" />
<invoke name="bookLuxury" minCost="0.51"

minReliability="0.41" maxCost="0.98" />
<invoke name="bookAthletic" minReliability="0.31"

maxCost="0.9"/>
</serviceInvocationQoS>
</invokeProcess>

In Figure 2, the QoSWeights entity corresponds to the weight vector that indicates the
importance of each attribute in the context of the particular adaptation. Then, each
WS-BPEL invoke construct is enhanced with attributes which convey the QoS minimum
and maximum limits for the relevant QoS attributes of the individual services: for each
invocation corresponding to an invoke construct, the service that will be selected to
realise the particular functionality should adhere to these limits. Note that the QoS
attribute weights have a scenario-wide scope, while the scope of the QoS attribute value
limits is one single service invocation.

 An integer programming-based algorithm 319

Figure 3 Hierarchy of services and service implementations for the travel planning WS-BPEL
scenario (see online version for colours)

 320 D. Margaris et al.

Figure 3 illustrates the taxonomy used in the travel planning WS-BPEL scenario
(SoDa Lab, 2020). The taxonomy contains three first-level branches, namely ‘ticket’,
‘residence’ and ‘event’, which are displayed as separate trees in Figure 3 to promote
readability. Nodes representing categories are represented as shaded rectangles with
double-lined borders, while nodes corresponding to individual service implementations
are denoted as clear rectangles with single-lined borders. A line between two rectangles
denotes that the lower-level node belongs to the category represented by the higher-level
node.

Each node corresponding to a service implementation bears information regarding the
QoS aspects of the corresponding implementation. An excerpt of this information is
depicted in Figure 4.

Figure 4 Excerpt of the service taxonomy extension

Category: Ticket
 Category: Air Ticket
 Category: Air Travel
Implementation: SwissAir (rt=0.75, cost=0.7, rel=0.8)
 Implementation: OlympicAirways (rt=0.8, cost=0.55, rel=0.78)
...
Category: Residence
 Category: Hotel
 Category: Luxury
Implementation: GrandResort (rt=0.91, cost=0.62, rel=0.61)
Implementation: Costa Navarino (rt=0.95, cost=0.92, rel=0.95)
 Implementation: Hilton (rt=0.98, cost=0.88, rel=0.39)
...
Category: Event
Category: Athletics
Category: Football
 Implementation: EuropeanCup (rt=0.75, cost=0.55, rel=0.9)
 Implementation: ChampionsLeague (rt=0.45, cost=0.94, rel=0.7)
Implementation: SportsTicketBooker (rt=0.65, cost=0.6, rel=0.8)
...
 Category: Culture
 Category: Music
Implementation: MagicOpera (rt=0.29, cost=0.54, rel=0.82)

4.2 The ES algorithm

The ES algorithm initially reads the BPEL scenario and identifies the respective branches
of the taxonomy under which the service implementations which are candidate for use in
the particular scenario adaptation are located. According to the rationale of the
subsumption relationships, only nodes delivering the exact and plug-in functionalities, in
relation to the one designated in the scenario, are eligible for use to deliver the
functionality in the composition. Consequently, if a service category is specified in the
scenario under adaptation, only service implementation nodes that are descendants (either
direct or indirect) of the category within the taxonomy tree are selected; if a concrete
service implementation is designated in the scenario, then the direct parent of the
designated service implementation is first located, and subsequently its descendants
(either direct or indirect) within the taxonomy tree are selected.

 An integer programming-based algorithm 321

In our example, the realisation of the ‘Luxury’ service designated within the scenario
can be performed by any of the services under the ‘Luxury’ category within the
taxonomy tree of Figure 3 (Grand Resort; Costa Navarino; Hilton), whereas the
realisation of the ‘Athletic’ service can be performed by either the ‘SportsTicketBooker’
service (a direct descendant of the ‘Athletic’ category within the taxonomy tree), or any
of the descendants of the ‘football’ and ‘basketball’ service categories.

Once the candidate services delivering the required functionalities have been
identified, they are filtered considering the QoS attribute limits designated by the user for
the particular invocation. In our example, service ‘Hilton’ would be filtered out because it
does not meet the minimum threshold for reliability specified by the user, and service
‘ChampionsLeague’ would be discarded because its cost exceeds the maximum cost
threshold. After this step has concluded, for each of the functionalities fi specified in the
scenario under adaptation, a set of candidate functionality implementations ifC is
formulated.

As stated above, the ES algorithm proceeds in formulating all possible
service implementation combinations, considering service implementations that fulfil the
user-provided thresholds. This is equivalent to the Cartesian product of the candidate
functionality implementations sets ,ifC i.e.:

1 2 nf f fallCombinations C C C= × × ×

where n is the number of functionalities within the scenario being adapted.
In our example, the set of all combinations would be

.AirTravel Luxury AthleticallCombinations C C C= × ×

Subsequently, for each of the combinations, the QoS attribute values of the compositions
are computed, using the formulas presented in Section 3.1, and the overall score of the
composition is calculated, by applying a weighted sum formula on the combination’s
QoS attribute values, where the weights for the QoS attributes are given by the
QoSweights vector (c.f. Figure 2). Finally, the combination having the highest overall
score is selected.
Table 4 QoS attribute value and overall score computation formulas for the trip booking

scenario

Computation target Computation formula
Response time (rt) rtAirTravel + max(rtLuxury, rtAthletic)
Cost (cost) costAirTravel + costLuxury + costAthletic
Reliability (rel) relAirTravel × relLuxury × relAthletic
Overall score 0.2 × rt + 0.3 × cost + 0.5 × rel

Considering the trip booking example, Table 4 depicts the formulas used to calculate the
QoS attribute values of the compositions, as well as the compositions’ overall score (as
far as the weights assigned to the three attributes are concerned, these are the ones set by
the user in the example – Table 3 and Figure 2), whereas Table 5 illustrates the
calculation results of some of the combinations that are generated formulated
by the algorithm. Among the combinations considered, the combination <SwissAir,

 322 D. Margaris et al.

CostaNavarino, EuropeanCup> attains the highest score and is therefore selected to
perform the particular adaptation.
Table 5 QoS attribute value and overall score computation for service candidate combinations

Combination
QoS attribute Overall

score rt cost rel
<SwissAir, GrandResort, EuropeanCup> 1.66 1.87 0.44 1.113
<SwissAir, GrandResort, SportsTicketBooker> 1.66 1.92 0.39 1.103
<SwissAir, CostaNavarino, EuropeanCup> 1.7 2.17 0.68 1.333
… … … … …
<OlympicAirways, CostaNavarino, SportsTicketBooker> 1.75 2.07 0.59 1.267

4.3 The IP-based algorithm

As noted above, the IP-based algorithm formulates an IP problem, the solution of which
is the adaptation to be performed on the scenario. In more detail, the IP problem
formulation proceeds as follows:

1 Initially the functionalities to be adapted in the original scenario are identified, the
corresponding branches in the taxonomy containing potential candidates for the
realisation of the functionalities are identified, and the potential candidates are
filtered according to the QoS limits designated by the user. This step is identical to
the corresponding procedure used in the exhaustive algorithm; when this step
concludes, for each of the functionalities fi specified in the scenario under adaptation,
a set of candidate functionality implementations ifC is formulated.

Recall that in our example, the functionalities to be adapted are ‘AirTravel’,
‘Luxury’ and ‘Athletics’. For brevity in notations, we will use the ordinals 1, 2 and 3
to denote the corresponding functionalities. Let us assume that C1 = {SwissAir,
OlympicAirways}, C2 = {GrandResort, CostaNavarino} and C3 = {EuropeanCup,
SportsTicketBooker}.

2 For each set of candidate functionality implementations ,ifC a set of variables
,1 ,2 ,{ , , , }ii i i mx x x is introduced, where mi denotes the cardinality of ,ifC i.e.,

.ii fm C= Variable xi,j effectively corresponds to the jth candidate for realising
functionality fi and may be assigned either the value 1, if the jth candidate for
realising functionality fi is actually selected to realise the functionality fi in the
context of the adaptation, or 0, otherwise. Since exactly one of the candidates within

ifC will be selected for the realisation of fi, it follows that the sum of all variables xi,j
must be equal to 1.

According to the above, for each set of candidate functionality implementations ,ifC
the following elements are added to the IP problem:

 An integer programming-based algorithm 323

a A set of variables ,1 ,2 ,{ , , , },ii i i mx x x where .ii fm C=

b A set of constraints, ,{0 1}, :1 ;ii j fx j j C≤ ≤ ∀ ≤ ≤ note that since we employ
IP, xi,j can only be assigned integer values and therefore possible assignments to
each xi,j are only xi,j = 0 and xi,j = 1. In environments supporting mixed IP
problems, i.e., problems where some of the variables accept only integer values
whereas other variables may be assigned any real value, the constraint that the
xi,j variables are integers is added using a declaration of the form ‘integer xi,j’.

c a constraint ,1
1,fiC

i jj
x

=
= for each of the categories .ifC

In our example, the set of variables would be {x1,1, x1,2, x2,1, …, x3,2}, with x1,1
corresponding to the first candidate service of the first functionality (i.e., SwissAir),
x1,2 corresponding to the second candidate service of the first functionality (i.e.,
OlympicAir) and so forth. The set of constraints stemming that are added according
to item 2, above, would be {0 ≤ x1,1 ≤ 1, 0 ≤ x1,2 ≤ 1, 0 ≤ x1,1 ≤ 1, …, 0 ≤ x3,2 ≤ 1}.
Finally, the set of constraint introduced due to item 3 above would be {x1,1 + x1,2 = 1,
x2,1 + x2,2 = 1, x3,1 + x3,2 = 1}.

3 The next step focuses on the formulation of the objective function. The objective
function is built according to the following algorithm:
a A partial objective function POFcost is formulated for the cost QoS attribute: The

use of a particular service implementation , ii j fs C∈ to realise functionality fi in
the final adaptation would entail the payment of the cost associated with that
service implementation; however, if the service is not selected, the cost is not
entailed (recall that all QoS attributes, including cost, are normalised in the
range [0, 1] with higher values being more preferable for the user). Since 1 each
service si,j is associated with a corresponding binary variable xi,j introduced in
step 2 above, and 2 according to the formulas introduced in Section 3.1, the
overall value of the cost QoS attribute in a composition is the sum of the costs of
the constituent parts, formula (7) reflects the overall value for the cost QoS
attribute, taking into account both the service selections and the associated costs
(n denotes the number of functionalities to be adapted in the scenario).

()(), ,
1 1

cos
fiCn

i j i j
i j

x t s
= =

∗ (7)

In our example, the partial objective function corresponding to the cost QoS
attribute would be:

1,1 1,2 2,1 3,20.7 0.55 0.62 0.6costPOF x x x x= × + × + × + + × (8)

b A partial objective function POFrel is formulated for the reliability QoS
attribute: Similarly to the case of the cost presented above, and taking into
account that according to the formulas introduced in Section 3.1, the overall
value of the reliability QoS attribute in a composition is the product of the
reliabilities of the constituent parts, the formula reflecting the overall value for
the reliability QoS attribute is:

 324 D. Margaris et al.

()(), ,
11

fiCn

i j i j
ji

x rel s
==

∗∏ (9)

However, this (partial) objective function is multiplicative, and thus cannot be
used in an IP problem formulation, since IP requires that objective functions are
linear (c.f. Section 3.3). To address this issue, the approach suggested in
(Cardellini et al., 2017; Zeng et al., 2004) is followed, according to which the
property

()log logi i
ii

a a  = 
 

∏ (10)

is exploited to transform the product to a sum, effectively substituting all
occurrences of rel(i) by log(rel(i)) and all products by sums. Effectively:

()()

()()

, ,
11

, ,
1 1

log

log

fi

fi

Cn

rel i j i j
ji

Cn

rel i j i j
i j

POF x rel s

POF x rel s

==

= =

 
 = ∗
 
 

 
  = ∗
 
 

∏

 
 (11)

and since exactly one of the xi,j variables will be equal to one for each i,
formula (11) can be rewritten as:

()()(), ,
11

log
fiCn

rel i j i j
ji

POF x rel s
==

= ∗∏ (12)

which adheres to the requirements for IP objective functions.
Following the procedure described above, in the case of the trip booking
example the partial objective function corresponding to the reliability QoS
attribute would be equal to:

1,1 1,2 2,1 3,2log(0.8) log(0.78) log(0.61) log(0.8)x x x x× + × + × + + × (13)

c A partial objective function POFrt is formulated for the response time QoS
attribute: In this formulation, the different elements are handled differently,
depending on whether they are composed under a sequential or a parallel
execution structure, according to the formulas listed in Section 3.1. The
procedure for formulating the partial objective function for the response time
QoS attribute proceeds in a bottom-up fashion as follows:
• For each a set of candidate functionality implementations Cf = {if,1, if,2, …,

if,n(f)}, the term:

() () (),1 ,1 ,2 ,2 , () , ()() f f f f f n f f n fRT f rt i x rt i x rt i x= × + × + + × (14)

is formulated, modelling the response time of the functionality, taking into
account the choice of a particular service implementation that will be made
to realise functionality f.

 An integer programming-based algorithm 325

• If two simple or composite functionalities f1 and f2 are combined by means
of a SEQ construct into a composite functionality comp(f1, f2, SEQ), the
terms expressing the response time of f1 and f2 are added up together to form
the term conveying the runtime of composite service comp(f1, f2, SEQ), as
shown in formula (15):

()() () ()1 2 1 2, ,RT comp f f SEQ RT f RT f= + (15)

• If two simple or composite functionalities f1 and f2 are combined by means
of a FLOW construct into a composite functionality comp(f1, f2, FLOW), the
maximum of the terms expressing the response time of f1 and f2 is calculated
to form the term conveying the runtime of composite service comp(f1, f2,
FLOW), as depicted in formula (16):

()() () ()()1 2 1 2, , maxRT comp f f FLOW RT f RT f= + (16)

The formula corresponding to the root composition of the WS-BPEL scenario
represents the computation of the partial objective function is formulated for the
response time QoS attribute, POFrt.
Cases 1 and 2 effectively create a formula that is directly compatible with the IP
problem formulation (a sum of terms, where each term is of the form αijxi; c.f.
Section 3.3). However, case 3 corresponding to the parallel composition entails
the application of the max function, which is not permissible in an IP problem.
This issue is addressed following the method described in Bisschop (2020),
according to which an objective entailing the max function (termed a minimax
objective) undergoes a transformation procedure to assume a form compliant
with the IP problem formulation specifications. In more detail, an objective
function containing the term

,max p q q
p P

q Q

c x
∈

∈

 
 
 
 (17)

is transformed as follows:
• a new variable z is introduced, which represents the above term
• a set of constraints of the form

, ,p q q
q Q

c x z p P
∈

≤ ∀ ∈ (18)

are added to the problem, to ensure that the newly introduced term z
(representing the max function) is greater than or equal to each individual
argument of the max function.

Notably, this transformation can be applied either directly in the problem
modelling stage, or internally by the software that is employed to calculate the
solution to the IP problem. In the solution implemented in the context of our
research, we have used the IBM ILOG CPLEX integrated software environment
(IBM, 2013a, 2013b), which performs this transformation internally, hence the
integer problem is formulated using the max function where needed, as dictated

 326 D. Margaris et al.

by the formulas in Section 3.1, and presented to the IBM ILOG CPLEX
software, which applies any necessary transformations and yields the solution to
the problem.
In the trip booking example, the partial objective function formulated for the
response time QoS attribute is as shown in formula (19):

()1,1 1,2 2,1 2,2 3,1 3,20.75 0.8 max 0.91 0.95 , 0.75 0.65x x x x x x× + × + × + × × + × (19)

d The overall objective function OF is calculated: The three partial objective
functions, POFrt, POFcost and POFrel are synthesised into a single objective
function using a simple weighted sum formula. More specifically:

rt rt cost cost

rel rel

OF QoSWeights POF QoSWeightd POF
QoSWeights POF

= × + ×
+ ×

 (20)

where QoSWeights is the vector expressing the weights of the QoS attributes are
scenario level (c.f. Table 3 and Figure 2).

The performance assessment of the two algorithms (ES and IP-based), in terms of
online adaptation time and quality of the produced results, is presented in the next
section.

5 Experimental evaluation

In this section, we present our experiments, aiming to evaluate the proposed algorithm, in
terms of:

a the quality of the formulated adaptations, i.e., how close the score of the adaptation
formulated by the proposed algorithm is to the optimal one

b the efficiency of the algorithm, corresponding to the time needed to compute the
requested adaptations.

Notably, the exhaustive algorithm presented in Margaris et al. (2013) computes the
optimal adaptation, since it completely enumerates all possible adaptations and selects the
one attaining the maximum score.

For the experimental evaluation, we utilised a machine equipped with one Celeron
N2840@2.16GHz with 4 GB of RAM, which hosted the BPEL scenarios (XML files)
and the service repository. The latter was the host for the representation of the
subsumption relationships and QoS characteristics of the services. For the purposes of the
evaluation we generated 30 WS-BPEL scenarios of varying complexity and size. More
specifically, we formulated a search grid considering as parameters the number of
functionalities per scenario (3, 4, 7 and 9), number of implementations per functionality
(ranging between 3, 6, 9 and 12) and number of parallel constructs within a scenario
(ranging between 0 and 4, with the number of parallel constructs being less than N/2),
and the vertices of this grid were used to create the search scenarios. The properties of the
set of generated WS-BPEL scenarios are listed in Table 6, while the 30 WS-BPEL
scenarios used in this experiment are provided in SoDa Lab (2020).

 An integer programming-based algorithm 327

Table 6 Properties of the generated WS-BPEL scenarios set

Property Value
Number of WS-BPEL scenarios 30
Minimum number of functionalities 3
Maximum number of functionalities 9
Mean number of functionalities 5.8
Minimum number of implementations for a functionality 3
Maximum number of implementations for a functionality 12
Mean number of implementations for a functionality 7.4
Minimum number of alternative compositions (exhaustive enumeration) 153
Maximum number of alternative compositions (exhaustive enumeration) 2,177,280
Mean number of alternative compositions (exhaustive enumeration) 485,956.6
Median of alternative compositions (exhaustive enumeration) 95,040
Minimum number of parallel constructs within a scenario 0
Maximum number of parallel constructs within a scenario 3
Mean number of parallel constructs within a scenario 1.23

Each scenario was run 100 times and, in each execution, the weights of the three QoS
attributes (runtime, cost, reliability) were randomly set in the range [0, 1] and
subsequently normalised in order to ensure that rtw + cw + relw = 1.

Figure 5 Execution time required by the two algorithms

0.00

0.01

0.10

1.00

10.00

100.00

O
pt

im
iza

tio
n

tim
e

(s
ec

)

Total number of alternatives in exhaustive solution

Exhaustive method Integer programming-based method

Figure 5 illustrates the execution time required by the two algorithms used in our work.
We can clearly see that, while the processing time of the ES algorithm (which creates and
evaluates all possible combinations between WSs, in order to select the one achieving the
highest score) increases exponentially when the number of combinations that need to be
tested increases (note that the y-axis follows a logarithmic scale), the
IP-based algorithm, on the other hand, manages to keep the execution time at very low

 328 D. Margaris et al.

levels, even in the most demanding scenarios, consisting of nine services to be
recommended, with over 2 M alternative compositions. This indicates that the IP-based
algorithm can be used in online environments, since the overhead introduced is
practically negligible.

Figure 6 Optimisation time required by the ES algorithm (see online version for colours)

Figure 6 elaborates on the optimisation time required by the ES algorithm, considering
the number of services in the BPEL scenario and the average number of alternatives per
service. We can observe that the optimisation time increases exponentially with both
parameters, while for scenarios having a moderate number of services (seven or more)
and a moderate number of alternatives per service (exceeding six alternatives on average
from scenarios with seven services or exceeding 3–4 on average for scenarios with nine
services), the optimisation time surpasses 1 second.

Figure 7 Optimisation time required by the IP-based algorithm (see online version for colours)

Correspondingly, Figure 7 elaborates on the optimisation time required by the IP-based
algorithm, considering the number of services in the BPEL scenario and the average
number of alternatives per service. We can observe that the optimisation time increases
very slightly as the number of services and/or the number of alternative implementations
per service increases.

 An integer programming-based algorithm 329

Figure 8 Comparison of the scores of the solutions produced by the two algorithms

95.5%

96.0%

96.5%

97.0%

97.5%

98.0%

98.5%

99.0%

99.5%

100.0%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

IP
 a

lg
or

ith
m

 so
lu

tio
n

qu
al

ity

Scenario number

Figure 8 illustrates our experimental findings regarding the quality of the execution score
achieved by the IP algorithm, in relation to the quality of the solution produced by the ES
algorithm (which is the optimal one, since the ES algorithm considers all candidate
solutions). For each scenario (represented as an item on the horizontal axis), the average
score quality over the 100 runs with randomised QoS attribute weights is depicted, while
the error bars represent the minimum and maximum score quality observed for that
particular scenario. We can observe that the quality of the solution computed by the IP
algorithm is greater than or equal to 97% for all cases, while the global average score
quality of the IP algorithm (i.e., the average quality of the solutions computed by the IP
algorithm over the 100 randomised runs of each scenario in relation to the respective
scores of produced by the exhaustive algorithm) is 99.37%. For 24 scenarios, the IP
algorithm was able to compute an optimal solution for at least one QoS attribute weight
combination. Overall, in 62% of the tested cases, the solution computed by the IP
algorithm was identical to the one computed by the exhaustive algorithm.

In general, scenarios comprising of higher numbers of constituent services, exhibit a
larger deviation between the score of the solution computed by the IP algorithm and the
optimal one, computed by the ES algorithm. However, the performance gains, when the
number of services increases, are more substantial.

In comparison with other algorithms presented in the literature, the proposed
IP-based algorithm provides a speedup of 2–3 orders of magnitude against the
OPTIM_HWEIGHT algorithm (Comes et al., 2010), 1–2 orders of magnitude as
compared to the QSSAC algorithm (Xia et al., 2011) and 2–4 orders of magnitude against
the WSC−CGA algorithm (Liu et al., 2015).

Overall, the experiments clearly demonstrate that the IP-based algorithm can provide
very substantial speedup over both the exhaustive algorithm, as well as other adaptation
algorithms presented in the literature, with practically negligible effects on the quality of
the formulated solutions. Since the overhead introduced by the proposed algorithm is
small, the proposed algorithm can be directly integrated into WS-BPEL execution
engines, to cater for online adaptation of user requests.

 330 D. Margaris et al.

6 Conclusions and future work

In this work, an IP-based algorithm for adapting the execution of WS-BPEL scenario
invocations, recommending services according to criteria and policies set by the user was
presented. The proposed algorithm exploits multiple characteristics of the WSs and the
WS-BPEL language to formulate an IP problem which is then solved to optimise the
WS-BPEL scenario execution. The characteristics exploited are clearly domain
dependent. The algorithm design process, however, can be used to formulate analogous
algorithms in other domains. Each of those algorithms should be verified and validated,
considering appropriate characteristics and datasets from the relevant domains. The
proposed algorithm was validated through a set of experiments, using scripts with
varying size and complexity. These experiments showed that the IP-based algorithm’s
execution time remains low, even in the most demanding scenarios, addressing thus an
important shortcoming of the ES algorithm, which guarantees solution optimality on the
one hand, however its execution time grows exponentially with the number of
functionalities within the scenario to be adopted, as well as with the number of candidate
services that can be used to realise a functionality. The proposed algorithm was also
compared to other algorithms that are presented in the literature and was found to reduce
the adaptation computation time by 1–4 orders of magnitude. As far as the adaptation
quality is concerned, the solutions produced by the IP-based algorithm are very close to
the optimal one, with their overall score lagging behind the score of the optimal one less
than 2.9% in all cases and less than 0.5% on average. The above results clearly
demonstrate the feasibility of the proposed algorithm, as well as its suitability for an
online usage, since adaptations are computed in less than 0.003 seconds, therefore any
incurred overhead is negligible.

Our future work will focus on handling of loops and conditional execution constructs
in WS-BPEL scenarios; this can be supported through branch prediction and loop
unrolling techniques (Bernstein, 1996), as well as by gathering statistical information
from prior scenario executions and using it as input to the adaptation process.

Acknowledgements

The authors would like to sincerely thank Prof. Costas Vassilakis for his supervision,
guidance, support and scientific input for the work presented in this paper.

References
Bellur, U. and Kulkarni, R. (2007) ‘Improved matchmaking algorithm for semantic web services

based on bipartite graph matching’, Proceedings of the IEEE International Conference on
Web Services, 2007 (ICWS 2007), IEEE, Salt Lake City, UT, pp.86–93.

Bernstein, A.J. (1996) ‘Analysis of programs for parallel processing’, IEEE Transactions on
Electronic Computers, Vol. 15, No. 5, pp.757–763, IEEE.

Bisschop, J. (2020) ‘Linear programming tricks’, chapter in AIMMS Optimization Modeling,
AIMMS [online] https://download.aimms.com/aimms/download/manuals/AIMMS3_OM.pdf
(accessed 17 January 2020).

 An integer programming-based algorithm 331

Bixby, R.E., Fenelon, M., Gu Z., Rothberg, E. and Wunderling, R. (2004) ‘Mixed integer
programming: a progress report’, chapter in Martin Grötschel (Ed.): The Sharpest Cut: The
Impact of Manfred Padberg and his Work, pp.309–325, MPS-SIAM Series on Optimization,
Berlin-Dahlem, Germany.

Canfora, G., Di Penta, M., Esposito, R. and Villani, M.L. (2005) ‘An approach for QoS-aware
service composition based on genetic algorithms’, Beyer, H-G. and O’Reilly, U-M. (Eds.):
Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, ACM,
pp.1069–1075.

Cardellini, V., Casalicchio, E., Grassi, V., Iannucci, S., Presti, F. and Mirandola, R. (2012)
‘MOSES: a framework for QoS driven runtime adaptation of service-oriented systems’, IEEE
Transactions on Software Engineering, September/October, Vol. 38, No. 5, pp.1138–1159.

Cardellini, V., Casalicchio, E., Grassi, V., Iannucci, S., Presti, F. and Mirandola, R. (2017)
‘MOSES: a platform for experimenting with QoS-driven self-adaptation policies for service
oriented systems’, Software Engineering for Self-Adaptive Systems III. Assurances. Lecture
Notes in Computer Science, Springer, Vol. 9640, pp.409–433.

Chen, F., Dou, R., Li, M. and Wub, H. (2016) ‘A flexible QoS-aware web service composition
method by multi-objective optimization in cloud manufacturing’, Computers & Industrial
Engineering, Elsevier, Vol. 99, pp.423–431.

Comerio, M., De Paoli, F., Grega, S., Maurino A. and Batini, C. (2007) ‘WSMoD: a methodology
for QoS-based web services design’, Web Services Research, Vol. 4, No. 2, pp.33–60.

Comes, D., Baraki, H., Reichle, R., Zapf, M. and Geihs, K. (2010) ‘Heuristic approaches for
QoS-based service selection’, Proceedings of the International Conference on Service-
Oriented Computing, (ICSOC’2010), LNCS 6470, Springer, pp.441–455.

Fu, X., Bultan, T. and Su, J. (2004) ‘Analysis of interacting BPEL web services’, Proceedings of
the 13th international conference on World Wide Web (WWW ‘04), ACM, pp.621–630.

Gouscos, D., Kalikakis, M. and Georgiadis, P. (2003) ‘An approach to modeling web service QoS
and provision price’, Proceedings of the Fourth International Conference on Web Information
Systems Engineering Workshops, IEEE, pp.121–130.

Gupta, R., Kamal, R. and Suman, U. (2018a) ‘A QoS-supported approach using fault detection and
tolerance for achieving reliability in dynamic orchestration of web services’, International
Journal of Information Technology, Vol. 10, No. 1, pp.71–81, Springer.

Gupta, R., Kamal, R. and Suman, U. (2018b) ‘Designing of an orchestration mechanism for the
efficient web-services composition’, Progress in Computing, Analytics and Networking.
Advances in Intelligent Systems and Computing, Vol. 710, pp.171–182, Springer, Singapore.

Halfaoui, A., Hadjila, F. and Didi, F. (2015) ‘QoS-aware web services selection based on fuzzy
dominance’, in Amine, A., Bellatreche, L., Elberrichi, Z., Neuhold, E. and Wrembel, R.
(Eds.): Computer Science and Its Applications (CIIA 2015), IFIP Advances in Information and
Communication Technology, Springer, Cham, Vol. 456.

Hallwyl, T., Henglein, F. and Hildebrandt, T. (2010) ‘A standard-driven implementation of
WS-BPEL 2.0’, Proceedings of the 2010 ACM Symposium on Applied Computing (SAC ‘10),
ACM, pp.2472–2476.

Hammas, O., Yahia, S.B. and Ahmed, S.B. (2015) ‘Adaptive web service composition insuring
global QoS optimization’, Proceedings of the 2015 International Symposium on Networks,
Computers and Communications, IEEE, pp.1–6.

He, D. and Wu, D. (2008) ‘Toward a robust data fusion for document retrieval’, Proceedings of the
IEEE 4th International Conference on Natural Language Processing and Knowledge
Engineering, NLP-KE 2008, Beijing, China, IEEE, pp.19–22.

IBM (2013a) IBM ILOG CPLEX Optimizer [online] http://www.ibm.com/software/commerce/
optimization/cplex-optimizer/ (accessed 23 September 2019).

IBM (2013b) Using CPLEX to Examine Alternate Optimal Solutions [online] http://www.ibm.com/
support/docview.wss?uid=swg 21399929 (accessed 23 September 2019).

 332 D. Margaris et al.

Kareliotis, C., Vassilakis, C., Rouvas, S. and Georgiadis, P. (2009) ‘QoS-driven adaptation of
BPEL scenario execution’, Proceedings of the 2009 International Conference on Web
Services, IEEE, pp.271–278.

Liang, X., Qin, A., Tang, K. and Tan, K. (2019) ‘QoS-aware web service selection with internal
complementarity’, IEEE Transactions on Services Computing, Vol. 12, No. 2, pp.276–289,
IEEE.

Liu, Z.Z., Jia, Z.P. and Xue, X. (2015) ‘Reliable web service composition based on QoS dynamic
prediction’, Soft Computing, Vol. 19, No. 5, pp.1409–1425, Springer.

Lu, Y. and Xu, X. (2017) ‘A semantic web-based framework for service composition in a cloud
manufacturing environment’, Journal of Manufacturing Systems, Vol. 42, pp.69–81, Elsevier.

Machorro-Cano, I., Alor-Hernández, G., Olmedo-Aguirre, J.O., Rodríguez-Mazahua, L. and
Segura-Ozuna, M.G. (2020) ‘IoT services orchestration and choreography in the healthcare
domain’, Techniques, Tools and Methodologies Applied to Global Supply Chain Ecosystems,
Vol. 166, pp.429–454, Intelligent Systems Reference Library, Springer, Cham.

Margaris, D., Vassilakis, C. and Georgiadis, P. (2013) ‘An integrated framework for QoS-based
adaptation and exception resolution in WS-BPEL scenarios’, Proceedings of the 28th ACM
Symposium on Applied Computing (ACM SAC 2013), ACM, pp.1900–1906.

O’Sullivan, J., Edmond, D. and Ter Hofstede, A. (2002) ‘What is a service?: Towards accurate
description of non-functional properties’, Distributed and Parallel Databases, Vol. 12,
pp.117–133, Kluwer Academic Publishers, The Netherlands.

Rodriguez-Mier, P., Pedrinaci, C., Lama, M. and Mucientes, M. (2016) ‘An integrated semantic
web service discovery and composition framework’, IEEE Transactions on Services
Computing, Vol. 9, No. 4, pp.537–550, IEEE.

Schrijver, A. (1998) Theory of Linear and Integer Programming, John Wiley & Sons, New York,
USA.

SoDa Lab (2020) WS-BPEL Scenarios for Adaptation Benchmarking [online] https://soda.dit.uop.
gr/?q=node/774 (accessed 2 May 2020).

Song, Z. and Tilevich, E. (2019) ‘Equivalence-enhanced microservice workflow orchestration to
efficiently increase reliability’, Proceedings of the 2019 IEEE International Conference on
Web Services, IEEE, pp.426–433.

Wang, P., Ding, Z., Jiang, C., Zhou, M. and Zheng, Y. (2016) ‘Automatic web service composition
based on uncertainty execution effects’, IEEE Transactions on Services Computing, Vol. 9,
No. 4, pp.551–565, IEEE.

Xia, Y., Chen, P., Bao, L., Wang, M. and Yang, J. (2011) ‘A QoS-aware web service selection
algorithm based on clustering’, Proceedings of the 2011 International Conference on Web
Services, IEEE, pp.428–435.

Zatout, S., Berkane, M. and Boufaida, M. (2018) ‘An architecture dedicated to dynamic adaptation
for services orchestration’, Proceedings of the 8th International Conference on Computer
Science and Information Technology, IEEE, pp.219–224.

Zeng, LB., Benatallah, A.H.N., Dumas, M., Kalagnanam, J. and Chang, H. (2004) ‘QoS-aware
middleware for web services composition’, IEEE Transactions on Software Engineering,
Vol. 30, No. 5, pp.311–327, IEEE.

Zhang, Y. and Lyu, M.R. (2017) ‘QoS-aware web service searching’, chapter in QoS Prediction in
Cloud and Service Computing, pp.81–103, Springer, Singapore.

